472 resultados para PHASE-LOCKED LOOPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trajectory optimization of a generic launch vehicle is considered in this paper. The trajectory from launch point to terminal injection point is divided in to two segments. The first segment deals with launcher clearance and vertical raise of the vehicle. During this phase, a nonlinear feedback guidance loop is incorporated to assure vertical raise in presence of thrust misalignment, centre of gravity offset, wind disturbance etc. and possibly to clear obstacles as well. The second segment deals with the trajectory optimization, where the objective is to ensure desired terminal conditions as well as minimum control effort and minimum structural loading in the high dynamic pressure region. The usefulness of this dynamic optimization problem formulation is demonstrated by solving it using the classical Gradient method. Numerical results for both the segments are presented, which clearly brings out the potential advantages of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of phase formation is generalised for any arbitrary time dependence of nucleation and growth rates. Some sources of this time dependence are time-dependent potential inputs, ohmic drop and the ingestion effect. Particular cases, such as potentiostatic and, especially, linear potential sweep, are worked out for the two limiting cases of nucleation, namely instantaneous and progressive. The ohmic drop is discussed and a procedure for this correction is indicated. Recent results of Angerstein-Kozlowska, Conway and Klinger are critically investigated. Several earlier results are deduced as special cases. Evans' overlap formula is generalised for the time-dependent case and the equivalence between Avrami's and Evans' equations established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal vibration modes of bis-(alkylammonium) tetrachlorometallates(II) and the corresponding alkylammonium chlorides have been studied through their phase transitions using infrared spectroscopy. The studies show that the vibrational states of alkylammonium ions change markedly through the phase transitions. Spectra of the analogous tetrabromometallates and alkylammonium bromides also confirm this behaviour. There is appreciable motion of the alkylammonium ions in the high-temperature phases; thus, CH3NH+3 ions are essentially undistorted in these phases. The low-temperature, ordered phases show evidence of stronger hydrogen bonding of the cations and for the presence of C—N torsional modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In phase-encoded optical CDMA (OCDMA) spreading is achieved by encoding the phase of signal spectrum. Here, a mathematical model for the output signal of a phase-encoded OCDMA system is first derived. This is shown to lead to a performance metric for the design of spreading sequences for asynchronous transmission. Generalized bent functions are used to construct a family of efficient phase-encoding sequences. It is shown how M-ary modulation of these spreading sequences is possible. The problem of designing efficient phaseencoded sequences is then related to the problem of minimizing PMEPR (peak-to-mean envelope power ratio) in an OFDM communication system.