490 resultados para MIXED-OXIDE
Resumo:
In order to explore the potential use of fly ash and plastic waste in bulk quantities in civil engineering applications, it is necessary to understand the behavior of fly ash and fly ash mixed with plastic waste. These materials are considered as wastes and in this study, it is shown that combination of fly ash and plastic waste is very useful. In this regard, various tests such as classification tests, unconfined compressive strength and compressibility tests, consolidated undrained tests, and California bearing ratio tests were conducted. The results indicated that the inclusion of plastic waste in fly ash is effective in improving the engineering properties of fly ash in terms of compressive strength, shear strength parameters, and CBR values. In order to understand the effect of sample size on the shear strength parameters of fly ash and fly ash mixed with plastic waste, consolidated undrained tests were conducted with sample sizes of 38x76mm and 50x100mm. The results of the tests indicate that the shear strength increases with the increase in sample size. The implication of the use of fly ash mixed with plastic waste in unpaved roads is presented in terms of reduction of carbon print.
Resumo:
Zinc oxide (ZnO) and silver doped zinc oxide (ZnO:Ag) nanoparticles were prepared using nitrates of zinc and silver as oxidizers and ethylene diaminetetraacetic acid (EDTA) as a fuel via low-temperature combustion synthesis (LCS) at 500 degrees C. X-ray diffraction (XRD) pattern indicates the presence of silver in the hexagonal wurtzite structure of ZnO. Fourier transform infrared (FTIR) spectrum indicates the presence of Ag-Zn-O stretching vibration at 510 cm(-1). Transmission electron microscopy (TEM) images shows that the average particle size of ZnO and ZnO:Ag nanoparticles were found to be 58 nm and 52 nm, respectively. X-ray photoelectron spectroscopy (XPS) data clearly indicates the presence of Ag in ZnO crystal lattice. The above characterization techniques indicate that the incorporation of silver affects the structural and optical properties of ZnO nanoparticles. ZnO:Ag nanoparticles exhibited 3% higher photocatalytic efficiency than pure ZnO nanoparticles. ZnO:Ag nanoparticles show better photocatalytic activity for the degradation of trypan blue (TrB) compared to undoped ZnO nanoparticles. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The paper explores the synthesis of oxide-free nanoparticles of Ag and Cu through laser ablation of pure targets under aqueous medium and tuning the quality and size through addition of Polyvinylpyrrolidone (PVP) in the medium. The size distribution of nanoparticles reduces from 37 +/- 30 nm and 13 +/- 5 nm to 32 +/- 12 nm and 4 +/- 1 nm for Ag and Cu with changes in PVP concentration from 0.00 to 0.02 M, respectively. Irregular shaped particles of Ag with Ag2O phase and a Cu-Cu2O core-shell particles form without the addition of PVP, while oxide layer is absent with 0.02 M of PVP. The recent understanding of the mechanism of particle formation during laser ablation under liquid medium allows us to rationalize our observation.
Resumo:
Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.
Resumo:
We report the formation of dendritic hierarchical structures of alpha-Fe2O3 and nanostructures of Fe2O3 by the simple liquid-liquid interface method. The morphology of thin films determined by high-resolution scanning electron microscopy shows nanorods, nanosheets and dendritic Fe2O3. The identification of phases of iron oxide structures is carried out by using XRD and XPS studies. XRD and XPS measurements point out the highly crystalline dendritic alpha-Fe2O3 phase and the mixed phase of alpha- and gamma-Fe2O3 nanostructures. The magnetic measurement also suggests the presence of a mixed phase in the sample grown for 72 hours.
Resumo:
This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.
Resumo:
A label-free biosensor has been fabricated using a reduced graphene oxide (RGO) and anatase titania (ant-TiO2) nanocomposite, electrophoretically deposited onto an indium tin oxide coated glass substrate. The RGO-ant-TiO2 nanocomposite has been functionalized with protein (horseradish peroxidase) conjugated antibodies for the specific recognition and detection of Vibrio cholerae. The presence of Ab-Vc on the RGO-ant-TiO2 nanocomposite has been confirmed using electron microscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Electrochemical studies relating to the fabricated Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode have been conducted to investigate the binding kinetics. This immunosensor exhibits improved biosensing properties in the detection of Vibrio cholerae, with a sensitivity of 18.17 x 10(6) F mol(-1) L-1 m(-2) in the detection range of 0.12-5.4 nmol L-1, and a low detection limit of 0.12 nmol L-1. The association (k(a)), dissociation (k(d)) and equilibrium rate constants have been estimated to be 0.07 nM, 0.002 nM and 0.41 nM, respectively. This Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode could be a suitable platform for the development of compact diagnostic devices.
Resumo:
In this study, multiwall carbon nanotubes (MWNTs) were chemically grafted onto dopamine anchored iron oxide (Fe3O4) nanoparticles via diazotization reaction to design electromagnetic (EM) shielding materials based on PC (polycarbonate)/SAN poly (styrene-co-acrylonitrile)] blends. A two step mixing protocol was adopted to selectively localize the nanoparticles in a given phase of the blends. In the first step, MWNT-g-Fe3O4 nanoparticles were solution blended with PC, followed by dilution with SAN during melt mixing in the subsequent step. This strategy, besides improving the quality of dispersion of MWNTs in the blends, facilitated enhanced EM interference shielding effectiveness (SE). Both, the MWNTs and the modified MWNTs, selectively localized in the PC phase and led to high electrical conductivity, in striking contrast to PC filled MWNT composites. The SE was measured on toroidal samples over a broad range of frequencies; X-band (8.2-12 GHz) and K-u-band (12-18 GHz). It was observed that the shielding mechanism mostly involved reflection in the blends with MWNTs, whereas absorption dominated in the case of blends with MWNT-g-Fe3O4. To realize the efficacy of this strategy, a few compositions were prepared by physical mixing MWNTs with Fe3O4 nanoparticles. Intriguingly, blends with MWNT-g-Fe3O4 nanoparticles manifested enhanced microwave absorption over physically mixed nanoparticles. An SE of -32.5 dB was observed (at 18 GHz) for MWNT (3 wt%)-g-Fe3O4 (3 vol%) in PC/SAN blends.
Resumo:
A unique strategy was adopted here to improve the compatibility between the components of an immiscible polymer blend and strengthen the interface. PMMA, a mutually miscible polymer to both PVDF and ABS, improved the compatibility between the phases by localizing at the blends interface. This was supported by the core-shell formation with PMMA as the shell and ABS as the core as observed from the SEM micrographs. This phenomenon was strongly contingent on the concentration of PMMA in the blends. This strategy was further extended to localize graphene oxide (GO) sheets at the blends interface by chemically coupling it to PMMA (PMMA-g-GO). A dramatic increment of ca. 84% in the Young's modulus and ca. 124% in the yield strength was observed in the presence of PMMA-g-GO with respect to the neat blends. A simultaneous increment in both the strength and the modulus was observed in the presence of PMMA-g-GO whereas, only addition of GO resulted in a moderate improvement in the yield strength. This study reveals that a mutually miscible polymer can render compatibility between the immiscible pair and can improve the stress transfer at the interface.
Resumo:
As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion-dissolution at extreme pH conditions, together with the formation of inert Zn(OH)(2) during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.
Resumo:
Temperature dependent current-voltage (I-V) measurements of electrochemically prepared zinc oxide nanowire/polypyrrole (ZnONW/PPy) nanocomposite yielded non-linear I-V characteristics at temperatures between 300 and 4.5 K. The low-field conductance (G) of the ZnONW/PPy film exhibits pronounced temperature dependence with room temperature conductance (G(300K)) similar to 10(-3) S and a conductance ratio (G(300)K/G(4.5K)) of similar to 10(4), indicating dominance of significant temperature dependent charge transport processes. The conduction mechanism of the film is satisfactorily understood by extended fluctuation induced tunneling (FIT) model as the non-linear I-V characteristics fit fairly well to the extended FIT model. Further, the temperature dependence of G(o) obtained from fitting followed Sheng's model also. (C) 2014 AIP Publishing LLC.
Resumo:
An easy and mild method has been developed for the synthesis of mixed glycosyl disulfides/selenenylsulfides from glycosyl halides and diaryl/dialkyl dichalcogenides in the presence of benzyltriethylammonium tetrathiomolybdate (BnEt3N)(2)MoS4]. The salient feature of this method is the sulfur transfer from BnEt3N](2)MoS4 to form glycosyl disulfides which with excess tetrathiomolybdate further undergo exchange reaction with other dichalcogenides in a one-pot operation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Al-doped ZnO thin films were synthesized from oxygen reactive co-sputtering of Al and Zn targets. Explicit doping of Al in the highly c-axis oriented crystalline films of ZnO was manifested in terms of structural optical and electrical properties. Electrical conduction with different extent of Al doping into the crystal lattice of ZnO (AZnO) were characterized by frequency dependent (40 Hz-50 MHz) resistance. From the frequency dependent resistance, the ac conduction of them, and correlations of localized charge particles in the crystalline films were studied. The dc conduction at the low frequency region was found to increase from 8.623 mu A to 1.14 mA for the samples AZnO1 (1 wt% Al) and AZnO2 (2 wt% Al), respectively. For the sample AZnO10 (10 wt% Al) low frequency dc conduction was not found due to the electrode polarization effect. The measure of the correlation length by inverse of threshold frequency (omega(0)) showed that on application of a dc electric field such length decreases and the decrease in correlation parameter(s) indicates that the correlation between potentials wells of charge particles decreases for the unidirectional nature of dc bias. The comparison between the correlation length and the extent of correlation in the doped ZnO could not be made due to the observation of several threshold frequencies at the extent of higher doping. Such threshold frequencies were explained by the population possibility of correlated charge carriers that responded at different frequencies. For AZnO2 (2% Al), the temperature dependent (from 4.5 to 288 K) resistance study showed that the variable range hopping mechanism was the most dominating conduction mechanism at higher temperature whereas at low temperature region it was influenced by the small polaronic hopping conduction mechanism. There was no significant influence found in these mechanisms on applications of 1, 2 and 3 V as biases.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
Inhibition of electron-hole pair recombination is the most desirable solution for stimulating photocatalytic activity in semiconductor nanostructures. To implement this, herein we study the photocatalytic efficiency of elemental Au, Pd and bimetallic AuPd nanoalloy decorated pristine and reduced graphene oxide (RGO) hybridized ZnO nanorods for degrading rhodamine 6G (R6G) dye. Fabrication of Au, Pd and AuPd nanoalloy on pristine and RGO modified ZnO nanorods is simple and more importantly surfactant or polymer free. AuPd nanoalloyed ZnO-RGO nanocomposites exhibit higher photocatalytic activity for degrading dye than both Au and Pd hybridized ones, indicating the promising potential of bimetallic nanoalloys over elemental components. A non-monotonic dependence on the composite composition was found by analyzing photodegradation efficiency of a series of ZnO-RGO-AuPd hybrid nanostructures with different weight percentages of RGO. The hybrid nanostructure ZnO-RGO (5 wt%)-AuPd (1 wt%) exhibits highest photodegradation efficiency (similar to 100% degradation in 20 min) with an improvement in rate constant (k) by a factor of 10 compared to that of the ZnO-RGO nanocomposite. The enhancement of the photocatalytic activity is attributed to the better separation of photogenerated charge carriers in photocatalysts thereby suggesting possible usefulness in a broad range of applications, such as sensing, photocatalysis and solar energy conversion.