498 resultados para Biopolymeric carbon, carbon equivalents


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se55Te25Ge20, Se55Te25Ge20 + 0.025% multi walled carbon nano tubes and Se55Te25Ge20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se55Te25Ge20) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ag doped BaTiO3-CuO mixed oxide thin films are evaluated for their carbon-dioxide sensing characteristics. The metal oxide films of different thicknesses are deposited on oxidized p type Si < 100 > substrate by RF Sputtering. Sensing characteristics for different CO2 concentration, (300 ppm - 1000 ppm) are obtained for different operating temperatures, (100 degrees C - 400 degrees C). Optimum temperature for maximum sensitivity is found to be 250 degrees C. The effect of annealing on sensing properties is also evaluated. The unannealed films give better sensitivity than that of annealed films. Response time and recovery time are also calculated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an electrochemical alloying reaction, the electroactive particles become mechanically unstable owing to large volume changes occurring as a result of high amounts of lithium intake. This is detrimental for long-term battery performance. Herein, a novel synthesis approach to minimize such mechanical instabilities in tin particles is presented. An optimal one-dimensional assembly of crystalline single-phase tin-antimony (SnSb) alloy nanoparticles inside porous carbon fibers (abbreviated SnSb-C) is synthesized for the first time by using the electrospinning technique (employing non-oxide precursors) in combination with a sintering protocol. The ability of antimony to alloy independently with lithium is beneficial as it buffers the unfavorable volume changes occurring during successive alloying/dealloying cycles in Sn. The SnSb-C assembly provides nontortuous (tortuosity coefficient, =1) fast conducting pathways for both electrons and ions. The presence of carbon in SnSb-C completely nullifies the conventional requirement of other carbon forms during cell electrode assembly. The SnSb-C exhibited remarkably high electrochemical lithium stability and high specific capacities over a wide range of currents (0.2-5Ag(-1)). In addition to lithium-ion batteries, it is envisaged that SnSb-C also has potential as a noncarbonaceous anode for other battery chemistries, such as sodium-ion batteries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 μm and inter-sheet separation of 380 μm. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (≈4 μm) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. © 2015 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tufted and plain unidirectional carbon fabric-reinforced epoxy composite laminates were fabricated by vacuum-enhanced resin infusion technology and subjected to in-plane tensile tests with a view to study the changes in mechanical properties and failure responses. Owing to the presence of tufts in the laminates, both the tensile strength and modulus decrease by similar to 38 and similar to 20%, respectively, vis-A -vis the values recorded for plain composites. The fracture features point to the fact that though both the composites fail in brittle manner, they, however, exhibit differing fiber pull out lengths. Further, it was noticed that for the tufted ones, crack originates in the vicinity of tuft thread, spreads through the composite in a brittle manner, and results in a display of shorter fiber pull out lengths. These observations and other results are discussed in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ammonia plays an important role in our daily lives and hence its quantitative and qualitative sensing has become necessary. Bulk structure of carbon nanotubes (CNTs) has been employed to detect the gas concentration of 10 ppm. Hydrophobic CNTs were turned to hydrophilic via the application of a ramp electric field that allowed confinement of a controlled amount of water inside CNT microstructure. These samples were then also used to detect different gases. A comparative study has been performed for sensing three reducing gases, namely, ammonia, sulphur-di-oxide, and hydrogen sulphide to elaborate the selectivity of the sensor. A considerable structural bending in the bulk CNT was observed on evaporation of the confined water, which can be accounted to the zipping of individual nanotubes. However, the rate of the stress induced on these bulk microstructures increased on the exposure of ammonia due to the change in the surface tension of the confined solvent. A prototype of an alarm system has been developed to illustrate sensing concept, wherein the generated stress in the bulk CNT induces a reversible loss in electrical contact that changes the equivalent resistance of the electrical circuit upon exposure to the gas. (C) 2015 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell voltage for a fully charged-substrate-integrated lead-carbon hybrid ultracapacitor is about 2.3 V. Therefore, for applications requiring higher DC voltage, several of these ultracapacitors need to be connected in series. However, voltage distribution across each series-connected ultracapacitor tends to be uneven due to tolerance in capacitance and parasitic parallel-resistance values. Accordingly, voltage-management circuit is required to protect constituent ultracapacitors from exceeding their rated voltage. In this study, the design and characterization of the substrate-integrated lead-carbon hybrid ultracapacitor with co-located terminals is discussed. Voltage-management circuit for the ultracapacitor is presented, and its effectiveness is validated experimentally.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWNTs) were anchored onto graphene oxide sheets (GOs) via diazonium and C-C coupling reactions and characterized by spectroscopic and electron microscopic techniques. The thus synthesized MWNT-GO hybrid was then melt mixed with 50/50 polyamide6-maleic anhydride-modified acrylonitrile-butadiene-styrene (PA6-mABS) blend to design materials with high dielectric constant (30) and low dielectric loss. The phase morphology was studied by SEM and it was observed that the MWNT-GO hybrid was selectively localized in the PA6 phase of the blend. The 30 scales with the concentration of MWNT-GO in the blends, which interestingly showed a very low dielectric loss (< 0.2) making them potential candidate for capacitors. In addition, the dynamic storage modulus scales with the fraction of MWNT-GO in the blends, demonstrating their reinforcing capability as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report an enhanced actuation in bulk carbon nanotubes (CNTs) under coupled electric and magnetic fields, which is much higher than that evaluated in the presence of individual fields. Coupled electric and magnetic fields induce a directional actuation demonstrating a transformation from polarity independent to dependent actuation behavior of CNTs. Both qualitative and quantitative analyses are performed to understand this transformation in the bulk CNTs. Moreover, actuations along radial and axial directions of CNTs have also demonstrated a similar directional behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size similar to 7 nm and similar to 95 m(2)/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors. (C) 2015 Author(s).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A silver ion (Ag+)-triggered thixotropic metallo(organo)gel of p-pyridyl-appended oligo(p-phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single-walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by pi-pi interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH-doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased step- wise in the order: freshly prepared gel

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly conducting composites were derived by selectively localizing multiwall carbon nanotubes (MWNTs) in co-continuous PVDF/ABS (50/50, wt/wt) blends. The electrical percolation threshold was obtained between 0.5 and 1 wt% MWNTs as manifested by a dramatic increase in the electrical conductivity by about six orders of magnitude with respect to the neat blends. In order to further enhance the electrical conductivity of the blends, the MWNTs were modified with amine terminated ionic liquid (IL), which, besides enhancing the interfacial interaction with PVDF, facilitated the formation of a network like structure of MWNTs. This high electrical conductivity of the blends, at a relatively low fraction (1 wt%), was further explored to design materials that can attenuate electromagnetic (EM) radiation. More specifically, to attenuate the EM radiation by absorption, a ferroelectric phase was introduced. To accomplish this, barium titanate (BT) nanoparticles chemically stitched onto graphene oxide (GO) sheets were synthesized and mixed along with MWNTs in the blends. Intriguingly, the total EM shielding effectiveness (SE) was enhanced by ca. 10 dB with respect to the blends with only MWNTs. In addition, the effect of introducing a ferromagnetic phase (Fe3O4) along with IL modified MWNTs was also investigated. This study opens new avenues in designing materials that can attenuate EM radiation by selecting either a ferroelectric (BT-GO) or a ferromagnetic phase (Fe3O4) along with intrinsically conducting nanoparticles (MWNTs).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xanthine oxidase (XOD) extracted from bovine milk was immobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto cadmium oxide nanoparticles (CdO)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film electrodeposited on the surface of an Au electrode. The nanocomposite modified Au electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. Under optimal operation conditions (25 degrees C, + 0.2 V vs. Ag/AgCl, sodium phosphate buffer, pH 7.5), the following characteristics are attributed to the biosensor: linearity of response up to xanthine concentrations of 120 mu M, detection limit of 0.05 mu M (S/N = 3) and a response time of at most 4 s. After being used 100 times over a period of 120 days, only 50% loss of the initial activity of the biosensor was evaluated when stored at 4 degrees C. The fabricated biosensor was successfully employed for the determination of xanthine in fish meat.