36 resultados para wide-area surveillance
Resumo:
Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (DeltaCp), enthalpy (DeltaH) and entropy (DeltaS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (DeltaCp) and enthalpy (DeltaH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.
Resumo:
This article addresses the problem of how to select the optimal combination of sensors and how to determine their optimal placement in a surveillance region in order to meet the given performance requirements at a minimal cost for a multimedia surveillance system. We propose to solve this problem by obtaining a performance vector, with its elements representing the performances of subtasks, for a given input combination of sensors and their placement. Then we show that the optimal sensor selection problem can be converted into the form of Integer Linear Programming problem (ILP) by using a linear model for computing the optimal performance vector corresponding to a sensor combination. Optimal performance vector corresponding to a sensor combination refers to the performance vector corresponding to the optimal placement of a sensor combination. To demonstrate the utility of our technique, we design and build a surveillance system consisting of PTZ (Pan-Tilt-Zoom) cameras and active motion sensors for capturing faces. Finally, we show experimentally that optimal placement of sensors based on the design maximizes the system performance.
Resumo:
The crucial role of the drug carrier surface chemical moeities on the uptake and in vitro release of drug is discussed here in a systematic manner. Mesoporous alumina with a wide pore size distribution (2-7 nm) functionalized with various hydrophilic and hydrophobic surface chemical groups was employed as the carrier for delivery of the model drug ibuprofen. Surface functionalization with hydrophobic groups resulted in low degree of drug loading (approximately 20%) and fast rate of release (85% over a period of 5 h) whereas hydrophilic groups resulted in a significantly higher drug payloads (21%-45%) and slower rate of release (12%-40% over a period of 5 h). Depending on the chemical moiety, the diffusion controlled (proportional to time(-0.5)) drug release was additionally observed to be dependent on the mode of arrangement of the functional groups on the alumina surface as well as on the pore characteristics of the matrix. For all mesoporous alumina systems the drug dosages were far lower than the maximum recommended therapeutic dosages (MRTD) for oral delivery. We envisage that the present study would aid in the design of delivery systems capable of sustained release of multiple drugs.
Resumo:
Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.
Resumo:
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.
Resumo:
MnO2 is currently under extensive investigations for its capacitance properties. MnO2 crystallizes into several crystallographic structures, namely, α, β, γ, δ, and λ structures. Because these structures differ in the way MnO6 octahedra are interlinked, they possess tunnels or interlayers with gaps of different magnitudes. Because capacitance properties are due to tercalation/deintercalation of protons or cations in MnO2, only some crystallographic structures, which possess sufficient gaps to accommodate these ions, are expected to be useful for capacitance studies. In order to examine the dependence of capacitance on crystal structure, the present study involves preparation of these various crystal phases of MnO2 in nanodimensions and to evaluate their capacitance properties. Results of α-MnO2 prepared by a microemulsion route (α-MnO2(m)) are also used for comparison. Spherical particles of about 50 nm, nanorods of 30−50 nm in diameter, or interlocked fibers of 10−20 nm in diameters are formed, which depend on the crystal structure and the method of preparation. The specific capacitance (SC) measured for MnO2 is found to depend strongly on the crystallographic structure, and it decreases in the following order: α(m) > α δ > γ > λ > β. A SC value of 297 F g-1 is obtained for α-MnO2(m), whereas it is 9 F g-1 for β-MnO2. A wide (4.6 Å) tunnel size and large surface area of α-MnO2(m) are ascribed as favorable factors for its high SC. A large interlayer separation (7 Å) also facilitates insertion of cations in δ-MnO2 resulting in a SC close to 236 F g-1. A narrow tunnel size (1.89 Å) does not allow intercalation of cations into β-MnO2. As a result, it provides a very small SC.