79 resultados para triangular enclosure
Resumo:
Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive.
Resumo:
Static characteristics of an analog-to-digital converter (ADC) can be directly determined from the histogram-based quasi-static approach by measuring the ADC output when excited by an ideal ramp/triangular signal of sufficiently low frequency. This approach requires only a fraction of time compared to the conventional dc voltage test, is straightforward, is easy to implement, and, in principle, is an accepted method as per the revised IEEE 1057. However, the only drawback is that ramp signal sources are not ideal. Thus, the nonlinearity present in the ramp signal gets superimposed on the measured ADC characteristics, which renders them, as such, unusable. In recent years, some solutions have been proposed to alleviate this problem by devising means to eliminate the contribution of signal source nonlinearity. Alternatively, a straightforward step would be to get rid of the ramp signal nonlinearity before it is applied to the ADC. Driven by this logic, this paper describes a simple method about using a nonlinear ramp signal, but yet causing little influence on the measured ADC static characteristics. Such a thing is possible because even in a nonideal ramp, there exist regions or segments that are nearly linear. Therefore, the task, essentially, is to identify these near-linear regions in a given source and employ them to test the ADC, with a suitable amplitude to match the ADC full-scale voltage range. Implementation of this method reveals that a significant reduction in the influence of source nonlinearity can be achieved. Simulation and experimental results on 8- and 10-bit ADCs are presented to demonstrate its applicability.
Resumo:
Characterization of melting process in a Phase Change Material (PCM)-based heat sink with plate fin type thermal conductivity enhancers (TCEs) is numerically studied in this paper. Detailed parametric investigations are performed to find the effect of aspect ratio of enclosure and the applied heat flux on the thermal performance of the heat sinks. Various non-dimensional numbers, such as Nusselt number (Nu), Rayleigh number (Ra), Stefan number (Ste) and Fourier number (Fo) based on a characteristic length scale, are identified as important parameters. The half fin thickness and the fin height are varied to obtain a wide range of aspect ratios of an enclosure. It is found that a single correlation of Nu with Ra is not applicable for all aspect ratios of enclosure with melt convection taken into account. To find appropriate length scales, enclosures with different aspect ratios are divided into three categories, viz. (a) shallow enclosure, (b) rectangular enclosure and (c) tall enclosure. Accordingly, an appropriate characteristic length scale is identified for each type of enclosure and correlation of Nu with Ra based on that characteristic length scale is developed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the kinematics of pantograph masts. Pantograph masts have widespread use in space application as deployable structures. They are over constrained mechanisms with degree-of-freedom, evaluated by the Grübler–Kutzback formula, as less than one. In this paper, a numerical algorithm is used to evaluate the degree-of-freedom of pantograph masts by obtaining the null space of a constraint Jacobian matrix. In the process redundant joints in the masts are obtained. A method based on symbolic computation, to obtain the closed-form kinematics equations of triangular and box shaped pantograph masts, is presented. In the process, the various configurations such masts can attain during deployment, are obtained. The closed-form solution also helps in identifying the redundant joints in the masts. The symbolic computations involving the Jacobian matrix also leads to a method to evaluate the global degree-of-freedom for these masts.
Resumo:
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Resumo:
To investigate the nature of the curve of critical exponents (as a function of the distance from a double critical point), we have combined our measurements of the osmotic compressibility with all published data for quasibinary liquid mixtures. This curve has a parabolic shape. An explanation of this result is advanced in terms of the geometry of the coexistence dome, which is contained in a triangular prism.
Resumo:
his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.
Resumo:
Prohibitive test time, nonuniformity of excitation, and signal nonlinearity are major concerns associated with employing dc, sine, and triangular/ramp signals, respectively, while determining static nonlinearity of analog-to-digital converters (ADCs) with high resolution (i.e., ten or more bits). Attempts to overcome these issues have been examined with some degree of success. This paper describes a novel method of estimating the ``true'' static nonlinearity of an ADC using a low-frequency sine signal (for example, less than 10 Hz) by employing the histogram-based approach. It is based on the well-known fact that the variation of a sine signal is ``reasonably linear'' when the angle is small, for example, in the range of +/- 5 degrees to +/- 7 degrees. In the proposed method, the ADC under test has to be ``fed'' with this ``linear'' portion of the sinewave. The presence of any harmonics and offset in input excitation makes this linear part of the sine signal marginally different compared with that of an ideal ramp signal of equal amplitude. However, since it is a sinusoid, this difference can be accurately determined and later compensated from the measured ADC output. Thus, the corrected ADC output will correspond to the true ADC static nonlinearity. The implementation of the proposed method is discussed along with experimental results for two 8-b ADCs and one 10-b ADC which are then compared with the static characteristics estimated by the conventional DC method.
Resumo:
Critical buckling loads of laminated fibre-reinforced plastic square panels have been obtained using the finite element method. Various boundary conditions, lay-up details, fibre orientations, cut-out sizes are considered. A 36 degrees of freedom triangular element, based on the classical lamination theory (CLT) has been used for the analysis. The performance of this element is validated by comparing results with some of those available in literature. New results have been given for several cases of boundary conditions for [0°/ ± 45°/90°]s laminates. The effect of fibre-orientation in the ply on the buckling loads has been investigated by considering [±?]6s laminates.
Resumo:
We report here an easily reversible set-reset process in a new Ge15Te83Si2 glass that could be a promising candidate for phase change random access memory applications. The I-V characteristics of the studied sample show a comparatively low threshold electric field (E-th) of 7.3 kV/cm. Distinct differences in the type of switching behavior are achieved by means of controlling the on state current. It enables the observation of a threshold type for less than 0.7 mA beyond memory type (set) switching. The set and reset processes have been achieved with a similar magnitude of 1 mA, and with a triangular current pulse for the set process and a short duration rectangular pulse of 10 msec width for the reset operation. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse, and their response of leading and trailing edges are discussed. About 6.5 x 10(4) set-reset cycles have been undertaken without any damage to the device. (C) 2011 American Institute of Physics. doi: 10.1063/1.3574659]
Resumo:
Surface melting by a stationary, pulsed laser has been modelled by the finite element method. The role of the surface tension driven convection is investigated in detail. Numerical results are presented for a triangular laser pulse of durations 10, 50 and 200 ms. Though the magnitude of the velocity is high due to the surface tension forces, the present results indicate that a finite time is required for convection to affect the temperature distribution within the melt pool. The effect of convection is very significant for pulse durations longer than 10 ms.
Resumo:
We consider a slow fading multiple-input multiple-output (MIMO) system with channel state information at both the transmitter and receiver. A well-known precoding scheme is based upon the singular value decomposition (SVD) of the channel matrix, which transforms the MIMO channel into parallel subchannels. Despite having low maximum likelihood decoding (MLD) complexity, this SVD precoding scheme provides a diversity gain which is limited by the diversity gain of the weakest subchannel. We therefore propose X- and Y-Codes, which improve the diversity gain of the SVD precoding scheme but maintain the low MLD complexity, by jointly coding information across a pair of subchannels. In particular, subchannels with high diversity gain are paired with those having low diversity gain. A pair of subchannels is jointly encoded using a 2 2 real matrix, which is fixed a priori and does not change with each channel realization. For X-Codes, these rotation matrices are parameterized by a single angle, while for Y-Codes, these matrices are left triangular matrices. Moreover, we propose X-, Y-Precoders with the same structure as X-, Y-Codes, but with encoding matrices adapted to each channel realization. We observed that X-Codes/Precoders are good for well-conditioned channels, while Y-Codes/Precoders are good for ill-conditioned channels.
Resumo:
A novel zincoborate, Zn(H2O)B2O4.xH(2)O (xapproximate to0.12), I, with open architecture has been synthesized hydrothermally. The 3-dimensional structure is built up of Zn6B12O24 clusters formed by the capping of the polycyclic borate anion, B12O2412-, by Zn3O3 clusters. The open-framework structure of I has one-dimensional 8-membered channels wherein the water molecules reside. Formation of trimeric Zn3O3 clusters as well as the presence of boron in dual coordination, both triangular and tetrahedral, are important structural features of this new zincoborate.