39 resultados para toxin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. Methods: Protein synthesis assay using (3)H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. Results: We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. Conclusions: This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated S. aureus (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the hlb-carrying prophage and includes the sea enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The sea gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the hlb-converting prophage in ST772. suggests that widespread mobility of the sea enterotoxin might be a selective force behind its `transfer' to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside he genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the mu-conotoxins that block vertebrate voltage-gated sodium channels (VGSCs), some have been shown to be potent analgesics following systemic administration in mice. We have determined the solution structure of a new representative of this family, mu-BuIIIB, and established its disulfide connectivities by direct mass spectrometric collision induced dissociation fragmentation of the peptide with disulfides intact The major oxidative folding product adopts a 1-4/2-5/3-6 pattern with the following disulfide bridges: Cys5-Cys17, Cys6-Cys23, and Cys13-Cys24. The solution structure reveals that the unique N-terminal extension in mu-BuIIIB, which is also present in mu-BuIIIA and mu-BuIIIC but absent in other mu-conotoxins, forms part of a short a-helix encompassing Glu3 to Asn8. This helix is packed against the rest of the toxin and stabilized by the Cys5-Cys17 and Cys6-Cys23 disulfide bonds. As such, the side chain of Val1 is located close to the aromatic rings of Trp16 and His20, which are located on the canonical helix that displays several residues found to be essential for VGSC blockade in related mu-conotoxins. Mutations of residues 2 and 3 in the N-terminal extension enhanced the potency of mu-BuIIIB for Na(v)1.3. One analogue, D-Ala2]BuIIIB, showed a 40-fold increase, making it the most potent peptide blocker of this channel characterized to date and thus a useful new tool with which to characterize this channel. On the basis of previous results for related mu-conotoxins, the dramatic effects of mutations at the N-terminus were unanticipated and suggest that further gains in potency might be achieved by additional modifications of this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1: 10 molar concentration of abrin: antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrin, a type II ribosome-inactivating protein, comprises A and B subunits wherein the A subunit harbours toxin activity and the B subunit has a galactose-specific lectin activity. The entry of the protein inside the cell is through the binding of the B chain to cell surface glycoproteins followed by receptor-mediated endocytosis and retrograde transport. A previous study from our laboratory showed that different cell lines exhibited differences of as great as similar to 200-fold in abrin toxicity, prompting the present study to compare the trafficking of the toxin within cells. Observations made in this regard revealed that the abrin A chain, after being released into the cytosol, is sequestered into the nucleus through interaction with a cellular protein of similar to 25 kDa, BASP1 (brain acid-soluble protein 1). The nuclear localization of the A chain is seen predominantly in cells that are less sensitive to abrin toxicity and dependent on the levels of BASP1 in cells. The sequestration by BASP1 renders cells increasingly resistant to the inhibition of protein synthesis by abrin and the nucleus act as a sink to overcome cellular stress induced

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: MazEF is a chromosomally encoded bacterial toxin-antitoxin system whose cellular role is controversial. Results: Expression of chromosomal MazF inhibits cell killing by multiple antibiotics in a Lon and ClpP dependent manner. Conclusion: MazF is involved in reversible growth inhibition and bacterial drug tolerance. Significance: Inactive, active-site toxin mutants yield functional insights by selectively activating the corresponding WT toxin in vivo. Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles.