149 resultados para third-order non-linearity
Resumo:
The scope of the differential transformation technique, developed earlier for the study of non-linear, time invariant systems, has been extended to the domain of time-varying systems by modifications to the differential transformation laws proposed therein. Equivalence of a class of second-order, non-linear, non-autonomous systems with a linear autonomous model of second order is established through these transformation laws. The feasibility of application of this technique in obtaining the response of such non-linear time-varying systems is discussed.
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Resumo:
The problem of decoupling a class of non-linear two degrees of freedom systems is studied. The coupled non-linear differential equations of motion of the system are shown to be equivalent to a pair of uncoupled equations. This equivalence is established through transformation techniques involving the transformation of both the dependent and independent variables. The sufficient conditions on the form of the non-linearity, for the case wherein the transformed equations are linear, are presented. Several particular cases of interest are also illustrated.
Resumo:
An analytical study for the static strength of adhesive lap joints is presented. The earlier solutions of Volkersen [i], DeBruyne[2] and others were limited to linear adhesives. The influence of adhesive non-linearity was first considered by Grimes' et al[3] and Dickson et al [4]. Recently Hart-Smith[5] successfully introduced elastic-plastic behaviour of the adhesive. In the present study the problem is formulated for general non-linear adhesive behaviour and an efficient numerical algorithm is written for the solution. Bilinear and trilinear models for the nonlinearity yield closed form analytical solutions.
Resumo:
The positivity of operators in Hilbert spaces is an important concept finding wide application in various branches of Mathematical System Theory. A frequency- domain condition that ensures the positivity of time-varying operators in L2 with a state-space description, is derived in this paper by using certain newly developed inequalities concerning the input-state relation of such operators. As an interesting application of these results, an L2 stability criterion for time-varying feedback systems consisting of a finite-sector non-linearity is also developed.
Resumo:
The transient response spectrum of a cubic spring mass system subjected to a step function input is obtained. An approximate method is adopted where non-linear restoring force characteristic is replaced by two linear segments, so that the mean square error between them is a minimum. The effect of viscous damping on the peak response is also discussed for various values of the damping constant and the non-linearity restoring force parameter.
Resumo:
It is shown that a sufficient condition for the asymptotic stability-in-the-large of an autonomous system containing a linear part with transfer function G(jω) and a non-linearity belonging to a class of power-law non-linearities with slope restriction [0, K] in cascade in a negative feedback loop is ReZ(jω)[G(jω) + 1 K] ≥ 0 for all ω where the multiplier is given by, Z(jω) = 1 + αjω + Y(jω) - Y(-jω) with a real, y(t) = 0 for t < 0 and ∫ 0 ∞ |y(t)|dt < 1 2c2, c2 being a constant associated with the class of non-linearity. Any allowable multiplier can be converted to the above form and this form leads to lesser restrictions on the parameters in many cases. Criteria for the case of odd monotonic non-linearities and of linear gains are obtained as limiting cases of the criterion developed. A striking feature of the present result is that in the linear case it reduces to the necessary and sufficient conditions corresponding to the Nyquist criterion. An inequality of the type |R(T) - R(- T)| ≤ 2c2R(0) where R(T) is the input-output cross-correlation function of the non-linearity, is used in deriving the results.
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
Resumo:
Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r
Resumo:
The natural modes of a non-linear system with two degrees of freedom are investigated. The system, which may contain either hard or soft springs, is shown to possess three modes of vibration one of which does not have any counterpart in the linear theory. The stability analysis indicates the existence of seven different modal stability patterns depending on the values of two parameters of non-linearity.
Resumo:
Raman induced phase conjugation (RIPC) spectroscopy is a relatively new coherent Raman spectroscopic (CRS) technique using optical phase conjugation (OPC), with which complete Raman spectra of transparent media can be obtained. It is a non-degenerate four-wave mixing technique in which two pulsed laser beams at Ω1 and Ω1 ± Δ where A corresponds to a vibrational frequency of a nonlinear medium mix with a third laser beam at Ω1 to generate a fourth beam Ω1 ± Δ, which is nearly phase conjugate to one of the beams at Ω1. With this technique one can measure the ratio of the resonant and nonresonant components of the third-order nonlinear susceptibilities of the nonlinear media. We have used this technique to get Raman spectra of well-known organic solvents like benzene etc., using pulsed Nd: YAG -dye laser systems. We have also studied the effect of delaying one of the interacting beams with respect to the others and the phase conjugate property of RIPC signals.
Resumo:
This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.