81 resultados para tb
Resumo:
With the intent of probing the feasibility of employing annulation as a tactic to engender axial rich conformations in nucleoside analogues, two adenine-derived, ``conformationally restricted'' nucleocylitols, 9 and 10, have been conceptualized as representatives of a hitherto unexplored class of nucleic acid base-cyclitol hybrids. A general synthetic strategy, with an inherent scope for diversification, allowed rapid functionalization of indane and tetralin to furnish 9 and 10 respectively in fair yield. Single-crystal X-ray diffraction analysis revealed that the two nucleocyclitols under study, though homologous, present completely dissimilar modes of molecular packing, marked, in particular, by the nature of involvement of the adenynyl NH2 group in the supramolecular assembly. In addition, the crystal structures of 9 and 10 also exhibit two different conformations of the functionalized cyclohexane ring. Thus, while the six-membered carbocycle in cyclopenta-annulated 9 exists in the expected chair (C) conformation that in cyclohexaannulated 10, which crystallizes as a dihydrate, shows an unusual twist-boat (TB) conformation. From a close analysis of the (HNMR)-H-1 spectroscopic data recorded for 9 and 10 in CD3OD, it was possible to put forth a putative explanation for the uncanny conformational preferences of crystalline 9 and 10.
Resumo:
3-Picoline-N-oxide (3-PicNO) complexes of rare-earth bromides of the formulaMBr3(3-PicNO)8–n·nH2O wheren=0 forM=La, Pr, Nd, Sm Tb or Y andn=2 forM=Ho or Yb have been prepared. Infrared and proton NMR studies indicate that the coordination of the ligand is through oxygen. Conductance data in acetonitrile suggest that two bromide ions are coordinated to the metal ion. Proton NMR studies suggest a bicapped dodecahedral arrangement of the ligands around the metal ion in solution for Pr(III), Nd(III) and Tb(III) complexes.
Resumo:
Complexes of 2,6-dimethylpyridine 1-oxide with lanthanide iodides of the formulaeLn(2,6-LTNO)5I3 whereLn=La, Tb and Yb,Ln(2,6-LTNO)4I3 whereLn=Pr and Nd and Er(2,6-LTNO)4.5I3 have been prepared and characterised by chemical analysis, infrared and conductance studies. Infrared and conductance data have been interpreted in terms of dimeric (or polymeric) structures involving bridging amine oxide groups.
Resumo:
Adducts of lanthanide perchlorates with 4-nitro and 4-chloro pyridine-Noxides (4-NPNO and 4-CPNO respectively) have been synthesised for the first time and characterised by analysis, electrolytic conductance, infrared, proton-NMR and electronic spectral data. The complexes are of the compositions Ln2(NPNO)15 (ClO4)6 (Ln = La, Pr, Nd and Gd), Tb(NPNO), (C1O4)6), Ln2(NPNO)13 (C1O4)6) (Ln = Dy, Ho, and Yb); Ln (CPNO)8 (C104)3) (Ln = La, Pr, Nd, Tb, Dy, Ho and Yb) and Ln(CPNO), (C1O4)3) (Ln = Sm and Gd). Conductivity and IR data provide evidence for the non-coordinated nature of the perchlorate groups. IR and NMR spectra suggest coordinationvia the oxygen of the N-oxide group. Electronic spectral shapes of the Nd+3 and Ho+3 complexes are interpreted in terms of eight-and seven-coordinate environments in the case of 4-NPNO complexes and eight-coordination in the case of 4-CPNO complexes. IR data indicate bridged structure in NPNO complexes of lanthanides other than Tb.
Resumo:
New complexes of lanthanide nitrates with N, N-diethylantipyrine-4-carboxamide (DEAP), with the general formulae [Ln2(DEAP)3] [NO3]6 (where Ln = La, Pr, Nd, Sm, Tb, Ho, Er, Yb and Y) have been isolated and characterized by chemical analysis and various physical methods such as electrolytic conductance, IR and13C NMR spectral data. Electrolytic conductance values and infrared spectral studies indicate that the nitrate groups are coordinated. Infrared and13C NMR spectral analysis show that the ligand DEAP is coordinated to the tripositive metal ion through the diethylcarboxamide carbonyl and antipyrine carbonyl oxygens in a bidentate fashion.
Resumo:
Phase diagram studies show that at ambient pressure only one ternary oxide, Cu(2)Ln(2)O(5), is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu(2)Ln(2)O(5) can be described as a zig-zag arrangement of one-dimensional Cu2O5 chains parallel to-the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu(2)Ln(2)O(5) (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu2Y2O5, the measured values for the Gibbs energies of formation of all other Cu(2)Ln(2)O(5) compounds fall in a narrow band (+/-1 kJ mol(-1)) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol(-1) for Cu2Tm2O5. Though associated with an uncertainty of +/-4 kJ mol(-1), the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.
Resumo:
2,4-Lutidine-1-oxide (2,4-LutO) complexes of lanthanide perchlorates of the formulae Ln2(2,4-LutO)13(ClO4)6 (Ln = Pr and Nd) and Ln2(2,4-LutO)15 (ClO4)6 (Ln = La, Tb, Dy, Ho and Yb) have been prepared and characterised by chemical analysis, IR, NMR, conductance and electronic spectral data. Proton NMR data along with the IR data show that the ligand coordinates to the metal ion through the oxygen. Conductance data of the complexes in acetone and nitrobenzene indicate that the perchlorate is not coordinated to the metal ion.
Resumo:
A series of anion-deficient pyrochlore oxides of the formula A2MoTiO7−x (xless-than-or-equals, slant0.5), where Atriple bond; length as m-dashSm, Gd, Tb, Dy, Ho, Er, Lu and Y, has been prepared by reduction of A2MoTiO8 scheelites. The scheelite-to-pyrochlore conversion is reversible, indicating that the reaction is likely to be topochemical. The oxidation states of molybdenum and titanium are most probably Mo(III) and Ti(IV) for the limiting composition of the pyrochlores A2MoTiO6.5. The new pyrochlores are non-metallic and paramagnetic as expected.
Resumo:
4-Nitro 2-picoline-l-oxide (NPicO) complexes of the formulae La (NPicO)5 (CIO4)3, Ln2 (NPicO)9 (C1O4)6 (Ln = Pr, Nd, and Gd) and Ln (NPicO)4 (CIO4)3 (Ln == Tb, Dy, Ho and Yb) have been synthesised and characterised by analysis, electrolytic conductance, infrared, proton NMR and electronic spectral data. A tentative coordination number of 6 for all the complexes have been assigned
Resumo:
A simple three step procedure was used to purify microsomal NADH-cytochrome b5 (ferricyanide) reductase to homogeneity from the higher plant C. roseus. The microsomal bound reductase was solubilized using zwitterionic detergent-CHAPS. The solubilized reductase was subjected to affinity chromatography on octylamino Sepharose 4B, blue 2-Sepharose CL-6B and NAD+-Agarose. The homogeneous enzyme has an apparent molecular weight of 33,000 as estimated by SDS-PAGE. The purified enzyme catalyzes the reduction of purified cytochrome b5 from C. roseus in the presence of NADH. The reductase also readily transfers electrons from NADH to ferricyanide (Km 56 μM), 2,6-dichlorophenolindophenol (Km 65 μM) and cytochrome Image via cytochrome b5 but not to menadione.
Resumo:
Lanthanide coordination polymers of the general formula Ln(2)(L)(5)(NO3)(H2O)(4)](n) (Ln = Eu (1), Tb (2), Gd (3)) supported by a novel aromatic carboxylate ligand 4-((1H-benzod]imidazol-1-yl)methyl)benzoic acid (HL) have been synthesized, characterized, and their photoluminescence behavior is examined. The powder X-ray diffraction patterns of complexes 1-3 showed that 1-3 are isostructural; thus, 1 has been chosen as an example to discuss in detail about the molecular structure by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) helical chain-like coordination polymer consisting of unique unsymmetrical dinuclear lanthanide building blocks. The 1D chains are further linked by the significant intermolecular hydrogen-bonding interactions to form a two-dimensional supramolecular network. The Tb3+ complex exhibits bright green luminescence efficiency in the solid state with a quantum yield of 15%. On the other hand, poor luminescence efficiency has been noted for Eu3+-benzoate complex.
Resumo:
In this investigation, the influence of microstructure on the high temperature creep behaviour of Ti-24Al-11Nb alloy has been studied. Different microstructures are produced by devising suitable heat treatments from the beta phase field. Creep tests are conducted in the temperature range of 923-1113 K, over a wide stress range at each temperature, employing the impression creep technique. The creep behaviour is found tb be sensitive to the crystallographic texture as well as to the details of microstructure. Best creep resistance is shown when the microstructure contains smaller alpha(2) plates and a lower beta volume fraction. This can be understood in terms of the dislocation barriers offered by alpha(2) beta boundaries and the case of plastic flow in the beta phase at high temperatures.
Resumo:
Isothermal sections of the phase diagrams for the systems Ln-Pd-O (Ln = lanthanide element) at 1223 K indicate the presence of two inter-oxide compounds Ln(4)PdO(7) and Ln(2)Pd(2)O(5) for Ln = La, Pr, Nd, Sm, three compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) for Ln = Eu, Gd and only one compound of Ln(2)Pd(2)O(5) for Ln = Tb to Ho. The lattice parameters of the compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) show systematic nonlinear variation with atomic number. The unit cell volumes decrease with increasing atomic number. The standard Gibbs energies, enthalpies and entropies of formation of the ternary oxides from their component binary oxides (Ln(2)O(3) and PdO) have been measured recently using an advanced version of the solid-state electrochemical cell. The Gibbs energies and enthalpies of formation become less negative with increasing atomic number of Ln. For all the three compounds, the variation in Gibbs energy and enthalpy of formation with atomic number is markedly non-linear. The decrease in stability with atomic number is most pronounced for Ln(2)Pd(2)O(5), followed by Ln(4)PdO(7) and Ln(2)PdO(4). This is probably related to the repulsion between Pd2+ ions on the opposite phases Of O-8 cubes in Ln(2)Pd(2)O(5), and the presence of Ln-filled O-8 cubes that share three faces with each other in Ln4PdO7. The values for entropy of formation of all the ternary oxides from their component binary oxides are relatively small. Although the entropies of formation show some scatter, the average value for Ln = La, Pr, Nd is more negative than the average value for the other lanthanide elements. From this difference, an average value for the structure transformation entropy of Ln(2)O(3) from C-type to A-type is estimated as 0.87 J.mol(-1).K-1. The standard Gibbs energies of formation of these ternary oxides from elements at 1223 K are presented as a function of lanthanide atomic number. By invoking the Neumann-Kopp rule for heat capacity, thermodynamic properties of the inter-oxide compounds at 298.15 K are estimated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Isothermal sections of the phase diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) have been established by equilibration of samples at T = 1223 K, and phase identification after quenching by optical and scanning electron microscopy (OM, SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRPD). Two oxide phases were stable along the binary Tb-O: Tb2O3+x, a phase of variable composition, and Tb7O12 at T = 1223K. The oxide PdO was not stable at this temperature. Only one ternary oxide Tb2Pd2O5 was identified in the Tb-Pd-O system. No ternary compound was found in the system Er-Pd-O at T = 1223K. However, the compound Er2Pd2O5 could be synthesized at T = 1075 K by the hydrothermal route. In both systems, the alloys and inter-metallic compounds were all found to be in equilibrium with the lanthanide sesquioxide Ln(2)O(3) (where Ln is either Tb or Er). Two solid-state cells, each incorporating a buffer electrode, were designed to measure the Gibbs energy of formation of the ternary oxides, using yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas as the reference electrode. Electromotive force measurements were conducted in the temperature range (900-1275) K for Th-Pd-O system, and at temperatures from (900-1075) K for the system Er-Pd-O. The standard Gibbs energy of formation Delta(f)G(m)degrees,, of the inter-oxide compounds from their component binary oxides Ln(2)O(3) and PdO are represented by equations linear in temperature. Isothermal chemical potential diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) are developed based on the thermodynamic information. (C) 2002 Elsevier Science Ltd. All rights reserved.