252 resultados para task type
Resumo:
The LysR-type transcriptional regulators (LTTRs) are widely distributed in various genera of prokaryotes LTTRs are DNA binding proteins that can positively or negatively regulate target gene expression and can also repress their own transcription Salmonella enterica comprises a group of Gram-negative bacteria capable of causing clinical syndromes that range from self-limiting diarrhoea to severe fibrinopurulent necrotizing enteritis and life threatening systemic disease. The survival and replication of Salmonella in macrophages and in infected host is brought about by the means of various two component regulatory systems, transporters and other virulence islands In Salmonella genome the existence of 44 LTTRs has been documented These LTTRs regulate bacterial stress response. systemic virulence in mice and also many virulence determinants in vitro. Here we focus on the findings that elucidate the structure and function of the LTTRs in Salmonella and discuss the importance of these LTTRs in making Salmonella a Successful pathogen...
Resumo:
The complete sequence of a P4 type VP4 gene from a G2 serotype human rotavirus, IS2, isolated in India has been determined. Although the IS2 VP4 is highly homologous to the other P4 type alleles, it contained acidic amino acid substitutions at several positions that make it acidic among the P4 type alleles that are basic. Moreover, comparative sequence analysis revealed unusual polymorphism in members of the P4 type at amino acid position 393 which is highly conserved in members of other VP4 types. To date, expression of complete VP4 inE. coli has not been achieved. In this study we present successful expression inE. coli of the complete VP4 as well as VP8* and VP5* cleavage subunits in soluble form as fusion proteins of the maltose-binding protein (MBP) and their purification by single-step affinity chromatography. The hemagglutinating activity exhibited by the recombinant protein was specifically inhibited by the antiserum raised against it. Availability of pure VP4 proteins should facilitate development of polyclonal and monoclonal antibodies (MAbs) for P serotyping of rotaviruses.
Resumo:
1. The rat brain type IIA Na+ channel alpha-subunit was stably expressed in Chinese hamster ovary (CHO) cells. Current through the expressed Na+ channels was studied using the whole-cell configuration of the patch clamp technique. The transient Na+ current was sensitive to TTX and showed a bell-shaped peak current vs. membrane potential relation. 2. Na+ current inactivation was better described by the sum of two exponentials in the potential range -30 to +40 mV, with. a dominating fast component and a small slower component. 3. The steady-state inactivation, h(infinity), was related to potential by a Boltzmann distribution, underlying thr ee states of the inactivation gate. 4. Recovery of the channels from inactivation at different potentials in the range -70 to -120 mV were characterized by al? initial delay which decreased with hyperpolarization. The time course was well fitted by the sum of two exponentials. In this case the slower exponential was the major component, and both time constants decreased with hyperpolarization. 5. For a working description of the Na+ channel inactivation in this preparation, with a minimal deviation from the Hodgkin-Huxley model, a three-state scheme of the form O reversible arrow I-1 reversible arrow I-2 was proposed, replacing the original two-state scheme of the Hodgkin-Huxley model, and the rate constants are reported. 6. The instantaneous current-voltage relationship showed marked deviation from linearity and was satisfactorily fitted by the constant-field equation. 7. The time course of activation was described by an m(x) model. However, the best-fitted value of x varied with the membrane potential and had a mean value of 2. 8. Effective gating charge was determined to be 4.7e from the slope of the activation plot, plotted on a logarithmic scale. 9. The rate constants of activation, alpha(m) and beta(m), were determined. Their functional dependence on the membrane potential was investigated.
Resumo:
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
Resumo:
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.
Resumo:
The crystal and molecular structure of N-benzyloxycarbonyl-a-aminoisobutyryl-L-prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212-21. Cell dimensions are a = 7.705 A, b = 11.365 A, and c = 21.904 A. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 - 1 intramolecular N-H--0 hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type 111 P-turn conformation, with 42 = -51.0°, +* = -39.7",&j = -65.0', $3 = -25.4'. An unusual feature is the occurrence of the proline residue at position 3 of the P-turn. The observed structure supports the view that Aib residues initiate the formation of type 111 @-turn conformations. The pyrrolidine ring is puckered in Cy-exo fashion.
Resumo:
DNA topoisomerases are ubiquitous nuclear enzymes that govern the topological interconversions of DNA by transiently breaking/rejoining the phosphodiester backbone of one (type I) or both (type II) strands of the double helix. Consistent with these functions, topoisomerases play key roles in many aspects of DNA metabolism. Type II DNA topoisomerase (topo II) is vital for various nuclear processes, including DNA replication, chromosome segregation, and maintenance of chromosome structure. Topo II expression is regulated at multiple stages, including transcriptional, posttranscriptional, and posttranslational levels, by a multitude of signaling factors. Topo II is also the cellular target for a variety of clinically relevant anti-tumor drugs. Despite significant progress in our understanding of the role of topo II in diverse nuclear processes, several important aspects of topo II function, expression, and regulation are poorly understood. We have focused this review specifically on eukaryotic DNA topoisomerase II, with an emphasis on functional and regulatory characteristics.
Resumo:
Pivaloyl-L-Pro-Aib-N-methylamihdaes been shown to possess one intramolecular hydrogen bond in (CD&SO solution, by 'H-nmr methods, suggesting the existence of p-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II P-turn conformations are about 2 kcal mol-' more stable than Type 111 structures. A crystallographic study has established the Type I1 /%turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 8, b = 11.421 A, c = 12.966 A, /3 = 97.55", and 2 = 2. The structure has been refined to a final R value of 0.061. The Type I1 p-turn conformation is stabilized by an intramolecular 4 - 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are @pro= -57.8", $pro = 139.3', @Aib = 61.4', and $Ajb = 25.1'. The Type 11 /%turn conformation for Pro-Aib in this peptide is compared with the Type I11 structures observed for the same segment in larger peptides.
Resumo:
Hyperbranched polyethers having poly(ethylene glycol) (PEG) segments at their molecular periphery were prepared by a simple procedure wherein an AB2 type monomer was melt-polycondensed with an A-type monomer, namely, heptaethylene glycol monomethyl ether. The presence of a large number of PEG units at the termini rendered a lower critical solution temperature (LCST) to these copolymers, above which they precipitated out of an aqueous solution. In an effort to understand the effect of various molecular structural parameters on their LCST, the length of the hydrophobic spacer segment within the hyperbranched core and the extent of PEGylation were varied. Additionally, linear analogues that incorporates pendant PEG segments were also prepared and comparison of their LCST with that of the hyperbranched analogue clearly revealed that hyperbranched topology leads to a substantial increase in the LCST, highlighting the importance of the peripheral placement of the PEG units.
Resumo:
We study diagonal estimates for the Bergman kernels of certain model domains in C-2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. Thisn condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range-roughly speaking-from being mildly infinite-type'' to very flat at the infinite-type points.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt -helical conformations stabilized by 11 successive 5 1 hydrogen bonds. In addition, a single 4 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (, ) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle NCC() and the observed backbone , values. For > 106° , helices are observed, while fully extended structures are characterized by < 106° . The mean values for extended and folded conformations for the Dpg residue are 103.6° ± 1.7° and 109.9° ± 2.6° , respectively.
Resumo:
Though silicon tunnel field effect transistor (TFET) has attracted attention for sub-60 mV/decade subthreshold swing and very small OFF current (IOFF), its practical application is questionable due to low ON current (ION) and complicated fabrication process steps. In this paper, a new n-type classical-MOSFET-alike tunnel FET architecture is proposed, which offers sub-60 mV/decade subthreshold swing along with a significant improvement in ION. The enhancement in ION is achieved by introducing a thin strained SiGe layer on top of the silicon source. Through 2D simulations it is observed that the device is nearly free from short channel effect (SCE) and its immunity towards drain induced barrier lowering (DIBL) increases with increasing germanium mole fraction. It is also found that the body bias does not change the drive current but after body current gets affected. An ION of View the MathML source and a minimum average subthreshold swing of 13 mV/decade is achieved for 100 nm channel length device with 1.2 V supply voltage and 0.7 Ge mole fraction, while maintaining the IOFF in fA range.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site- bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site- bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.
Resumo:
An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.