94 resultados para surface plasmon wave
Resumo:
The protein MsRbpA from Mycobacterium smegmatis rescues RNA polymerase (RNAP) from the inhibitory effect of rifampicin (Rif). We have reported previously that MsRbpA interacts with the beta-subunit of RNAP and that the effect of MsRbpA on Rif-resistant (Rif(R)) RNAP is minimal. Here we attempted to gain molecular insights into the mechanism of action of this protein with respect to its role in rescuing RNAP from Rif-mediated transcription inhibition. Our experimental approach comprised multiple-round transcription assays, fluorescence spectroscopy, MS and surface plasmon resonance in order to meet the above objective. Based on our molecular studies we propose here that Rif is released from its binding site in the RNAP-Rif complex in the presence of MsRbpA. Biophysical studies reveal that the location of MsRbpA on RNAP is at the junction of the beta- and beta'-subunits, close to the Rif-binding site and the (i + 1) site on RNAP.
Resumo:
A set of finite elements (FEs) is formulated to analyze wave propagation through inhomogeneous material when subjected to mechanical, thermal loading or piezo-electric actuation. Elastic, thermal and electrical properties of the materials axe allowed to vary in length and thickness direction. The elements can act both as sensors and actuators. These elements are used to model wave propagation in functionally graded materials (FGM) and the effect of inhomogeneity in the wave is demonstrated. Further, a surface acoustic wave (SAW) device is modeled and wave propagation due to piezo-electric actuation from interdigital transducers (IDTs) is studied.
Resumo:
Novel gold nanoparticles bearing cationic single-chain, double-chain, and cholesterol based amphiphilic units have been synthesized. These nanoparticles represent size-stable entities in which various cationic lipids have been immobilized through their thiol group onto the gold nanoparticle core. The resulting colloids have been characterized by UV-vis, (1)H NMR, FT-IR spectroscopy, and transmission electron microscopy. The average size of the resultant nanoparticles could be controlled by the relative bulkiness of the capping agent. Thus, the average diameters of the nanoparticles formed from the cationic single-chain, double-chain, and cholesterol based thiolate-coated materials were 5.9,2.9, and 2.04 nm, respectively. We also examined the interaction of these cationic gold nanoparticles with vesicular membranes generated from dipalmitoylphosphatidylcholine (DPPC) lipid suspensions. Nanoparticle doped DPPC vesicular suspensions displayed a characteristic surface plasmon band in their UV-vis spectra. Inclusion of nanoparticles in vesicular suspensions led to increases in the aggregate diameters, as evidenced from dynamic light scattering. Differential scanning calorimetric examination indicated that incorporation of single-chain, double-chain, and cholesteryl-linked cationic nanoparticles exert variable effects on the DPPC melting transitions. While increased doping of single-chain nanoparticles in DPPC resulted in the phases that melt at higher temperatures, inclusion of an incremental amount of double-chain nanoparticles caused the lowering of the melting temperature of DPPC. On the other hand, the cationic cholesteryl nanoparticle interacted with DPPC in membranes in a manner somewhat analogous to that of cholesterol itself and caused broadening of the DPPC melting transition.
Resumo:
Oligoarabinofuranoside-containing glycolipids relevant to mycobacterial cell wall components were synthesized in order to understand the functional roles of such glycolipids. A series of linear tetra-, hexa-, octa-and a branched heptasaccharide oligoarabinofuranosides, with 1 -> 2 and 1 -> 5 a-linkages between the furanoside residues, were synthesized by chemical methods from readily available monomer building blocks. Upon the synthesis of glycolipids, constituted with a double alkyl chain-substituted sn-glycerol core and oligosaccharide fragments, biological studies were performed to identify the effect of synthetic glycolipids on the biofilm formation and sliding motilities of Mycobacterium smegmatis. Synthetic glycolipids and arabinofuranosides displayed an inhibitory effect on the growth profile, but mostly on the biofilm formation and maturation. Similarly, synthetic compounds also influenced the sliding motility of the bacteria. Further, biophysical studies were undertaken, so as to identify the interactions of the glycolipids with a pulmonary surfactant protein, namely surfactant protein A (SP-A), with the aid of the surface plasmon resonance technique. Specificities of each glycolipid interacting with SP-A were thus evaluated. From this study, glycolipids were found to exhibit higher apparent association constants than the corresponding oligosaccharide portion alone, without the double alkyl group-substituted glycerol core.
Resumo:
Solubilization of single walled carbon nanotubes (SWNTs) in aqueous milieu by self assembly of bivalent glycolipids is described. Thorough analysis of the resulting composites involving Vis/near-IR spectroscopy, surface plasmon resonance, confocal Raman and atomic force microscopy reveals that glycolipid-coated SWNTs possess specific molecular recognition properties towards lectins.
Resumo:
The photoelectrode of Eosin-Y sensitised DSSC was modified by incorporating Au-nanoparticles to enhance the power conversion efficiency via scattering from surface plasmon polaritons. Size dependence of Au nanoparticle on conversion efficiency was performed in DSSC for the first time by varying the particle size from 20 to 94 nm. It was found that, the conversion efficiency is highly dependent on the size of the Au nanoparticles. For larger particles (>50 nm), the efficiency was found to be increased due to constructive interference between the transmitted and scattered waves from the Au nanoparticle while for smaller particles, the efficiency decreases due to destructive interference. Also a reduction in the V-oc was observed in general, due to the negative shifting of the TiO2 Fermi level on the adsorption of Au nanoparticle. This shift was negligible for larger particles. When 94 nm size particles were employed the conversion efficiency was doubled from 0.74% to 1.52%. This study points towards the application of the scattering effect of metal nanoparticle to enhance the conversion efficiency in DSSCs. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, beta-arabinofuranoside trisaccharide glycolipids constituted with beta-(1 -> 2), beta-(1 -> 3) and beta-(1 -> 2), beta-(1 -> 5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying beta-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few alpha-anomeric arabinofuranoside glycolipids showed that glycolipids with beta-anomeric linkages were having relatively lower equilibrium binding constants than those with alpha-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with alpha-anomeric linkages.
Resumo:
In this paper, enhanced fluorescence from a silver film coated nanosphere templated grating is presented. Initially, numerical simulation was performed to determine the plasmon resonance wavelength by varying the thickness of the silver film on top of a monolayer of 400 nm nanospheres. The simulation results are verified experimentally and tested for enhancing fluorescence from fluorescein isothiocyanate whose excitation wavelength closely matches with the plasmon resonance wavelength of the substrate with 100 nm silver film over nanosphere. The 12 times enhancement in the intensity is attributed to the local field enhancement in addition to the excitation of surface plasmon polaritons along the surface.
Resumo:
In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10. nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3. s and the detection limit of ammonia solution, 1. ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. © 2012 Elsevier B.V.
Resumo:
The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs EGF (epidermal growth factor)-like-repeats] 11-12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21-30 and the ELRs 11-15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21-30 and ELRs 11-15 is similar to 10-fold stronger than that between ELRs 11-15 and the ligands. Although there was no interaction between Notch 1 ELRs 21-30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21-30 and 11-15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21-30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25-26 being the most effective. These results suggest that the ELRs 25-26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11-12 are the principal ligand-binding site, the ELRs 25-26 serve as a secondary binding site and play an important role in receptor activation.
Resumo:
In the present study, silver nanoparticles were rapidly synthesized by treating silver ions with Citrus limon (lemon) extract at higher temperature. The effect of process parameters like reductant concentration, mixing ratio of the reactants, concentration of silver nitrate and heating time period were studied. The formation of silver nanoparticles was confirmed by surface plasmon resonance as determined by UV-visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. Nanoparticles below 50 nm with spherical and spheroidal shape were observed from microscopic studies. The study offers a rapid method to synthesize silver nanoparticles within ten minutes of interaction with the bio-reductant.
Resumo:
A low cost eco-friendly method for the synthesis of gold nanoparticles (AuNPs) using guar gum (GG) as a reducing agent is reported. The nanoparticles obtained are characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on these results, a potential mechanism for this method of AuNPs synthesis is discussed. GG/AuNPs nanocomposite (GG/AuNPs NC) was exploited for optical sensor for detection of aqueous ammonia based on surface plasmon resonance (SPR). It was found to have good reproducibility, response times of similar to 10 s and excellent sensitivity with a detection limit of 1 ppb (parts-per-billion). This system allows the rapid production of an ultra-low-cost GG/AuNPs NC-based aqueous ammonia sensor.
Resumo:
Nondegenerate pump probe differential transmission experiments on gold nanorods with varying longitudinal surface plasmon resonance have revealed a new phenomenon where the polarity of the transient transmission signal can be reversibly switched between photo bleaching and photo-induced absorption by controlling probe fluence. Under the usual case where probe fluences are nominal, photo bleaching effect is observed for the nanorods with longitudinal surface plasmon resonance energy smaller than the probe photon energy. The laser-induced melting of the nanorods or change in their shape is ruled out for the observed optical switching effect. A quantitative understanding of the results is attempted by invoking a cascaded two-photon absorption dominant beyond a threshold probe fluence of similar to 75 mu J/cm(2).
Resumo:
The multi-component nanomaterials combine the individual properties and give rise to emergent phenomenon. Optical excitations in such hybrid nonmaterial's ( for example Exciton in semiconductor quantum dots and Plasmon in Metal nanomaterials) undergo strong weak electromagnetic coupling. Such exciton-plasmon interactions allow design of absorption and emission properties, control of nanoscale energy-transfer processes, and creation of new excitations in the strong coupling regime.This Exciton plasmon interaction in hybrid nanomaterial can lead to both enhancement in the emission as well as quenching. In this work we prepared close-packed hybrid monolayer of thiol capped CdSe and gold nanoparticles. They exhibit both the Quenching and enhancements the in PL emission.The systematic variance of PL from such hybrid nanomaterials monolayer is studied by tuning the Number ratio of Gold per Quantum dots, the surface density of QDs and the spectral overlap of emission spectrum of QD and absorption spectrum of Gold nanoparticles. Role of Localized surface Plasmon which not only leads to quenching but strong enhancements as well, is explored.