173 resultados para subset sum problems
Resumo:
A 4-degree-of-freedom single-input system and a 3-degree-of-freedom multi-input system are solved by the Coates', modified Coates' and Chan-Mai flowgraph methods. It is concluded that the Chan-Mai flowgraph method is superior to other flowgraph methods in such cases.
Resumo:
A numerical procedure, based on the parametric differentiation and implicit finite difference scheme, has been developed for a class of problems in the boundary-layer theory for saddle-point regions. Here, the results are presented for the case of a three-dimensional stagnation-point flow with massive blowing. The method compares very well with other methods for particular cases (zero or small mass blowing). Results emphasize that the present numerical procedure is well suited for the solution of saddle-point flows with massive blowing, which could not be solved by other methods.
Resumo:
A numerical method is suggested for separation of stresses in photo-orthotropic elasticity using the numerical solution of compatibility equation for orthotropic case. The compatibility equation is written in terms of a stress parameter S analogous to the sum of principal stresses in two-dimensional isotropic case. The solution of this equation provides a relation between the normal stresses. The photoelastic data give the shear stress and another relation between the two normal stresses. The accuracy of the numerical method and its application to practical problems are illustrated with examples.
Resumo:
An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.
Resumo:
A method for separation of stresses in two and three-dimensional photo elasticity using the harmonisation ofjrst stress invariant along a straight section is deve- ,dped. For two-dimensions, the equations of equilibrium are reformulated in terms ojsum and difference of normal stresses and relations are obtained which can be used for harmonisation of the first invariant of stress along a straight section. A similar procedure is adopted for three-dimensions by making use of the Beltrmi-MicheN equations. The new relations are used in finite d~yerencefo rm to evaluate the sum of normal stresses along straight sections in a three-dimensional body. The method requires photoelastic data along the section as well ~rra djacent sections. This method could be used as an alternative to the shear d@erence method for separation of stresses in photoelasticity. 7he accuracy and reliability of the method is ver$ed by applying the method to problems whose solutions are known.
Resumo:
The remarkable advances made in recombinant DNA technology over the last two decades have paved way for the use of gene transfer to treat human diseases. Several protocols have been developed for the introduction and expression of genes in humans, but the clinical efficacy has not been conclusively demonstrated in any of them. The eventual success of gene therapy for genetic and acquired disorders depends on the development of better gene transfer vectors for sustained, long term expression of foreign genes as well as a better understanding of the pathophysiology of human diseases, it is heartening to note that some of the gene therapy protocols have found other applications such as the genetic immunization or DNA vaccines, which is being heralded as the third vaccine revolution, Gene therapy is yet to become a dream come true, but the light is seen at the end of the tunnel.
Resumo:
Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.
Resumo:
In this note, the fallacy in the method given by Sharma and Swarup, in their paper on time minimising transportation problem, to determine the setS hkof all nonbasic cells which when introduced into the basis, either would eliminate a given basic cell (h, k) from the basis or reduce the amountx hkis pointed out.
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
We present robust joint nonlinear transceiver designs for multiuser multiple-input multiple-output (MIMO) downlink in the presence of imperfections in the channel state information at the transmitter (CSIT). The base station (BS) is equipped with multiple transmit antennas, and each user terminal is equipped with one or more receive antennas. The BS employs Tomlinson-Harashima precoding (THP) for interuser interference precancellation at the transmitter. We consider robust transceiver designs that jointly optimize the transmit THP filters and receive filter for two models of CSIT errors. The first model is a stochastic error (SE) model, where the CSIT error is Gaussian-distributed. This model is applicable when the CSIT error is dominated by channel estimation error. In this case, the proposed robust transceiver design seeks to minimize a stochastic function of the sum mean square error (SMSE) under a constraint on the total BS transmit power. We propose an iterative algorithm to solve this problem. The other model we consider is a norm-bounded error (NBE) model, where the CSIT error can be specified by an uncertainty set. This model is applicable when the CSIT error is dominated by quantization errors. In this case, we consider a worst-case design. For this model, we consider robust (i) minimum SMSE, (ii) MSE-constrained, and (iii) MSE-balancing transceiver designs. We propose iterative algorithms to solve these problems, wherein each iteration involves a pair of semidefinite programs (SDPs). Further, we consider an extension of the proposed algorithm to the case with per-antenna power constraints. We evaluate the robustness of the proposed algorithms to imperfections in CSIT through simulation, and show that the proposed robust designs outperform nonrobust designs as well as robust linear transceiver designs reported in the recent literature.
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.
Resumo:
The importance of neurochemistry in understanding the functional basis of the nervous system was emphasized. Attention was drawn to the role of lipids, particularly the sphingolipids,whose metabolic abnormalities lead to 'sphingolipidosis' In the brain and to gangliosides, which show growth-promoting and neuritogenic properties. Several questions that remain to be answered in this area were enumerated. It was pointed out that neurons make a large number of proteins, an order of magnitude higher than other cells, and several of these are yet to be characterized and their functional significance established. Myelination and synapto-genesis are two fundamental processes in brain development. Although much is known about myelin lipids and proteins, it is not known what signals the glial cell receives to initiate myelin synthesis around the axon, In fact, the process of myelination provides an excellent system for studying membrane biogenesis and cell-sell interaction. Great strides were made in the understanding of neurotransmitter receptors and their function in synaptic transmission, but how neurons make synapses with other specific neurons in a preprogrammed manner is not known and requires immediate study. In this context, it was stressed that developmental neurobiology of the human brain could be most profitably done in India. The importance and complexity of signal transduction mechanisms in the brain was explained and many fundamental questions that remain to be answered were discussed. In conclusion, several other areas of contemporary research interest in the nervous system were mentioned and it was suggested that a 'National Committee for Brain Research' be constituted to identify and intensify research programmes in this vital field.
Resumo:
We have proposed a general method for finding the exact analytical solution for the multi-channel curve crossing problem in the presence of delta function couplings. We have analysed the case where aa potential energy curve couples to a continuum (in energy) of the potential energy curves.
Resumo:
Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formulations on a variety of problems have concluded that both methods yield Solutions of comparable accuracy, and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a class of transient problems, while the continuous-pressure formulation yields solutions that are in good agreement with the analytical Solution.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.