39 resultados para structured representations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-acceptor-donor-structured thiophene derivative-based conducting polymer poly(7,9-dithiophene-2yl-8H-cyclopentaa]acenaphthalene-8-one) was chemically synthesized. This polymer was used to modify both glassy-carbon and carbon-paste electrode, which was used to detect lead(II) ions present in water in the range of 1 mM to 0.1 mu M. Cyclic voltammetry confirms the formation of the co-ordination complex between the soft segment of polymer and the dissolved lead ion. Anodic stripping voltammetry was carried out by the modified electrode to determine the lower limit of detection of dissolved lead(II) species in the solution. Differential adsorptive stripping and impedance measurements were also conducted to find the lowest possible response of the as-synthesized polymer to lead(II) ion in water. The electrochemical performance of the modified electrodes at different pH (4, 7 and 9) environments was carried out by stripping voltammetry, to get optimum sensitivity and stability under these conditions. Finally, interference analysis was carried out to detect the modified electrode's sensitivity towards lead ion affinity in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel thiophene derivative 7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one (DTCPA) is shown to exhibit high electrical conductivity (1.97 x 10(-2) +/- 0.0018 S/cm at RT) in the crystalline state. The material shows two orders of increase in conductivity from normal solid to single crystalline state. The crystal structure has S center dot center dot center dot S chalcogen bonding, C-H center dot center dot center dot O hydrogen bonding, and pi center dot center dot center dot pi stacking as the major intermolecular interactions. The nature and strength of the S center dot center dot center dot S interactions in this structure have been evaluated by theoretical charge density analysis, and its contribution to the crystal packing quantified by Hirshfeld surface analysis. Further, thermal and morphological characterizations have been carried out, and the second harmonic generation (SHG) efficiency has been measured using the Kurtz-Perry method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, L beta', to the one dimensional (1D) rippled, P beta' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel L beta' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of similar to 2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films with 0.2 wt%, 0.4 wt%, 0.6 wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol-gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorption edge is shifted over the higher wavelength region with Fe content increasing. As Fe content increases, the optical band gap decreases from 3.03 to 2.48 eV whereas the tail width increases from 0.26 to 1.43 eV. The X-ray diffraction (XRD) patterns for doped films at 0.2 wt% and 0.8 wt% Fe reveal no characteristic peaks, indicating that the film is amorphous whereas undoped TiO2 exhibits (101) orientation with anatase phase. Thin films of higher Fe content exhibit a homogeneous, uniform, and nano-structured highly porous shell morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concurrent planning of sequential saccades offers a simple model to study the nature of visuomotor transformations since the second saccade vector needs to be remapped to foveate the second target following the first saccade. Remapping is thought to occur through egocentric mechanisms involving an efference copy of the first saccade that is available around the time of its onset. In contrast, an exocentric representation of the second target relative to the first target, if available, can be used to directly code the second saccade vector. While human volunteers performed a modified double-step task, we examined the role of exocentric encoding in concurrent saccade planning by shifting the first target location well before the efference copy could be used by the oculomotor system. The impact of the first target shift on concurrent processing was tested by examining the end-points of second saccades following a shift of the second target during the first saccade. The frequency of second saccades to the old versus new location of the second target, as well as the propagation of first saccade localization errors, both indices of concurrent processing, were found to be significantly reduced in trials with the first target shift compared to those without it. A similar decrease in concurrent processing was obtained when we shifted the first target but kept constant the second saccade vector. Overall, these results suggest that the brain can use relatively stable visual landmarks, independent of efference copy-based egocentric mechanisms, for concurrent planning of sequential saccades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, the effect of micro-structured cathode material on the device performance of indium tin oxide/poly(3hexylethiophene)/copper diode (ITO/P3HT/Cu) is investigated. Two different forms of copper namely bulk metal (Cu{B}) and nanoparticle (Cu{N}) were used as top electrode to probe its effect on device performance. Crystallographic structure and nanoscale morphology of top Cu electrodes were characterized using X-ray diffraction and scanning electronmicroscopy. Electrode formed by evaporation of copper nanoparticle showed enhancement in current density. From capacitance based spectroscopy we observed that density of trap states in ITO/P3HT/copper larger size grain (Cu-LG) are one order greater than that in ITO/P3HT/copper smaller size grain (Cu-SG) device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A block-structured adaptive mesh refinement (AMR) technique has been used to obtain numerical solutions for many scientific applications. Some block-structured AMR approaches have focused on forming patches of non-uniform sizes where the size of a patch can be tuned to the geometry of a region of interest. In this paper, we develop strategies for adaptive execution of block-structured AMR applications on GPUs, for hyperbolic directionally split solvers. While effective hybrid execution strategies exist for applications with uniform patches, our work considers efficient execution of non-uniform patches with different workloads. Our techniques include bin-packing work units to load balance GPU computations, adaptive asynchronism between CPU and GPU executions using a knapsack formulation, and scheduling communications for multi-GPU executions. Our experiments with synthetic and real data, for single-GPU and multi-GPU executions, on Tesla S1070 and Fermi C2070 clusters, show that our strategies result in up to a 3.23 speedup in performance over existing strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illumination plays an important role in optical microscopy. Kohler illumination, introduced more than a century ago, has been the backbone of optical microscopes. The last few decades have seen the evolution of new illumination techniques meant to improve certain imaging capabilities of the microscope. Most of them are, however, not amenable for wide-field observation and hence have restricted use in microscopy applications such as cell biology and microscale profile measurements. The method of structured illumination microscopy has been developed as a wide-field technique for achieving higher performance. Additionally, it is also compatible with existing microscopes. This method consists of modifying the illumination by superposing a well-defined pattern on either the sample itself or its image. Computational techniques are applied on the resultant images to remove the effect of the structure and to obtain the desired performance enhancement. This method has evolved over the last two decades and has emerged as a key illumination technique for optical sectioning, super-resolution imaging, surface profiling, and quantitative phase imaging of microscale objects in cell biology and engineering. In this review, we describe various structured illumination methods in optical microscopy and explain the principles and technologies involved therein. (C) 2015 Optical Society of America