111 resultados para strontium oxalate
Resumo:
The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.
Resumo:
The chemical potentials of SrO in two-phase fields (TiO2 + SrTiO3) (SrTiO3 + Sr4Ti3O10) (Sr4Ti3O10 + Sr3Ti2O7) and (Sr3Ti2O7 + Sr2TiO4) of the pseudo-binary system (SrO + TiO2) have been measured in the temperature range (900 to 1250) K relative to pure SrO as the reference state using solid-state galvanic cells incorporating single crystal SrF2 as the electrolyte The cells were operated under pure oxygen at ambient pressure The standard Gibbs free energies of formation of strontium titanates SrTiO3 Sr4Ti3O10 Sr3Ti2O7 and Sr2TiO4 from their component binary oxides were derived from the reversible electromotive force (EMF) of the cells For the formation of the four compounds from their component oxides TiO2 with rutile structure and SrO the standard Gibbs free energy changes are given by Delta G((ox))(SrTiO3) +/- 89/(J mol(-1)) = -121878 + 3 881(T/K) Delta G((ox))(Sr4Ti3O10) +/- 284/(J mol(-1)) = -409197 + 14 749(T/K) Delta G((ox))(Sr3Ti2O7) +/- 190/(J mol(-1)) = -285827 + 10 022(T/K) Delta G((ox))(Sr2TiO4) +/- 110/(J mol(-1))= -159385 + 3 770(T/K) The reference state for solid TiO2 is the rutile form The results of this study are in good agreement with Gibbs free energy of formation data reported in the literature for SrTiO3 but differ significantly with data for Sr4Ti3O10 For Si3Ti2O7 and Si2TiO4 experimental measurements are not available in the literature for direct comparison with the results obtained in this study (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2OsCO3, which decomposes between 600 and 800 ~ and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.
Resumo:
Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2O5CO3, which decomposes between 600 and 800° and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.Die Bedingungen für die Herstellung von stöchiometrischem Barium-zirconyl-oxalat Heptahydrat (BZO) wurden standardisiert. Die thermische Zersetzung von BZO wurde unter Einsatz der TG-, DTG- und DTA, sowie der chemischen und Gasanalyse untersucht. Die Zersetzung verläuft über vier Stufen und wird von der umgebenden Gasathmosphäre nicht besonders beeinflusst. Sowohl die Dehydratisierung als auch die Oxalatzersetzung erfolgt in zwei Stufen. Die Bildung einer intermediären Übergangsverbindung mit sowohl Oxalat- als auch Carbonatgruppen wirken hierbei mit. Die Zersetzung der Oxalatgruppen ergibt ein Carbonat der Zusammensetzung Ba2Zr2O5CO3, das zwischen 600 und 800° zersetzt wird und Bariumzirconat ergibt. Die Angaben der chemischen Analyse, der IR-Spekren und der Röntgen-Pulver-Diffraktion unterstützen die Identität der Intermediärverbindung als eine separate Einheit.On a standardisé les conditions de préparation de l'oxalate heptahydraté de zirconyle et de baryum (BZO) stoechiométrique. On a étudié la décomposition thermique de BZO par TG, TGD et ATD ainsi que par analyses chimiques et analyses des gaz. La décomposition a lieu en quatre étapes et n'est pas trop influencée par l'atmosphère ambiante. La déshydratation et la décomposition de l'oxalate ont lieu en deux étapes. Il se forme un composé intermédiaire de transition contenant à la fois les groupes oxalate et carbonate. La décomposition des groupes oxalate fournit un carbonate de composition Ba2Zr2O5CO3 qui se décompose entre 600 et 800° pour fournir du zirconate de baryum. L'analyse chimique, les spectres IR et la diffraction des rayons X sur poudre, apportent les preuves de l'existence d'un composé intermédiaire comme entité séparée.
Resumo:
Reduction behaviour of Fe3+/Al2O3 obtained by the decomposition of the oxalate precursor has been investigated by employing X-ray diffraction (XRD), Mössbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Calcination of Fe3+/Al2O3 at or below 1070 K yields mainly a poorly ordered, fine particulate form of ?-Al2�xFexO3. Calcination at or above 1220 K yields ?-Al2�xFexO3. Reduction of Fe3+/Al2O3 samples calcined at or below 1070 K gives the FeAl2O4 spinel on reduction at 870 K; samples calcined at or above 1220 K give Al2-xFexO3 with a very small proportion of metallic iron. Fe3+/Al2O3 samples calcined at 1220 K or above yield metallic iron and a very small proportion of the spinel on reduction below 1270 K. In the samples reduced at or above 1270 K, the main product is metallic iron in both ferromagnetic and superparamagnetic forms. The oxalate precursor route yields more metallic iron than the sol�gel route.
Resumo:
Polycrystalline strontium titanate (SrTiO3) films were prepared by a pulsed laser deposition technique on p-type silicon and platinum-coated silicon substrates. The films exhibited good structural and dielectric properties which were sensitive to the processing conditions. The small signal dielectric constant and dissipation factor at a frequency of 100 kHz were about 225 and 0.03 respectively. The capacitance-voltage (C-V) characteristics in metal-insulator-semiconductor structures exhibited anomalous frequency dispersion behavior and a hysteresis effect. The hysteresis in the C-V curve was found to be about 1 V and of a charge injection type. The density of interface states was about 1.79 x 10(12) cm(-2). The charge storage density was found to be 40 fC mu m(-2) at an applied electric field of 200 kV cm(-1). Studies on current-voltage characteristics indicated an ohmic nature at lower voltages and space charge conduction at higher voltages. The films also exhibited excellent time-dependent dielectric breakdown behavior.
Resumo:
Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.
Resumo:
Polycrystalline SrTiO3 films were prepared by pulsed excimer laser ablation on Si and Pt coated Si substrates. Several growth parameters were varied including ablation fluence, pressure, and substrate temperature. The structural studies indicated the presence of [100] and [110] oriented growth after annealing by rapid thermal annealing at 600-degrees-C for 60 s. Deposition at either lower pressures or at higher energy densities encouraged film growth with slightly preferred orientation. The scanning electron microscopy studies showed the absence of any significant particulates on the film surface. Dielectric studies indicated a dielectric constant of 225, a capacitance density of 3.2 fF/mum2, and a charge density of 40 fC/mum for films of 1000 nm thick. The dc conductivity studies on these films suggested a bulk limited space charge conduction in the high field regime, while the low electric fields induced an ohmic conduction. Brief time dependent dielectric breakdown studies on these films, under a field of 250 kV/cm for 2 h, did not exhibit any breakdown, indicating good dielectric strength.
Resumo:
Electron transport and magnetic properties of several compositions of the La1-xSx-zYzMnO3 system have been investigated in order to explore the effect of yttrium substitution on the magnetoresistance and related properties of these manganates. Yttrium substitution lowers the T-c and the insulator-metal transition temperature, while increasing the peak resistivity. A comparison of the properties of La1-xSrx-zYzMnO3 with the corresponding La1-xCax-zYzMnO3 compositions shows that the observed properties can be related to the average size of the A-site cations.
Resumo:
Strontium-doped lanthanum chromites, La1−xSrxCrO3, have been synthesised to investigate the effect of strontium doping on the stability and physico-chemical characteristics of the perovskite LaCrO3. Both microscopic and X-ray examinations show that the materials exist as single phase perovskite structure for all compositions up to 50 mole% strontium substitution. The materials have been further characterized by infrared and electron paramagnetic resonance spectra. These materials show a good sinterability even in air at 1773 K. Electrical conductivity of thse perovskites has been measured as a function of temperature. Electrical conductivity has been found to be a maximum at x=0.2. The observed electrical and magnetic properties are consistent with activated polaron transport as the mechanism for electrical conduction in these materials.
Resumo:
BaCu(C2O4)(2) . 6H2O is triclinic, P (1) over bar, with a = 6.5405(9), b = 9.202(3), c = 10.939(1) Angstrom, alpha = 85.46(2), beta = 79.22(1), gamma = 80.45(2), V = 636.99(1) Angstrom(3), Z = 2, D-0 = 2.14, D-c = 2.465 g . cm(-3), R = 0.074, wR = 0.0746 for 2219 significant reflections \F-0\ greater than or equal to 6.0 sigma F-0. The barium has eleven coordinations and the coordination polyhedra is a capped antiprism. Six water oxygen atoms are coordinated whereas the other five are coming from the oxalate group. In the unit cell the molecule's form a polymeric network. One lattice water molecule belongs to the coordinating water. The barium oxygen distances vary from 2.75 Angstrom to 3.15 Angstrom.
Resumo:
Synthesis and the thermal decomposition behavior of new molecular precursors, strontium, and calcium zirconyl citrates are presented. The pathway to the metazirconate formation has been found to proceed through a multistep process. The precursors yield SrZrO3 and CaZrO3 fine powders at temperatures as low as 650 degrees C. Physico-chemical, spectroscopic, thermoanalytical, and microscopic techniques have enabled the identification of the sequence of events leading to the perovskite formation and proposition of a thermolysis scheme. Retention of the molecular level mixing of the metal ions during the course of the precursor decomposition is supported by these techniques. Prior to the formation of MZrO3 (M = Sr and Ca) an ionic oxycarbonate, M2Zr2O5CO3 (M = SI. and Ca), intermediate is produced by the thermal decomposition of the citrate precursors.
Resumo:
Thin films of barium strontium titanate (BST) including BaTiO3 and SrTiO3 end members were deposited using the metallo-organic decomposition (MOD) technique. Processing parameters such as nonstoichiometry, annealing temperature and time, film thickness and doping concentration were correlated with the structural and electrical properties of the films. A random polycrystalline structure was observed for all MOD films under the processing conditions in this study. The microstructures of the films showed multi-grains structure through the film thickness. A dielectric constant of 563 was observed for (Ba0.7Sr0.3)TiO3 films rapid thermal annealed at 750 degrees C for 60 s. The dielectric constant increased with annealing temperature and film thickness, while the dielectric constant could reach the bulk values for thicknesses as thin as similar to 0.3 mu m. Nonstoichiometry and doping in the films resulted in a lowering of the dielectric constant. For near-stoichiometric films, a small dielectric dispersion obeying the Curie-von Schweidler type dielectric response was observed. This behavior may be attributed to the presence of the high density of disordered grain boundaries. All MOD processed films showed trap-distributed space-charge limited conduction (SCLC) behavior with slope of similar to 7.5-10 regardless of the chemistry and processing parameter due to the presence of main boundaries through the film thickness. The grain boundaries masked the effect of donor-doping, so that all films showed distributed-trap SCLC behavior without discrete-traps. Donor-doping could significantly improve the time-dependent dielectric breakdown behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping. From the results of charge storage density, leakage current and time-dependent dielectric breakdown behavior, BST thin films are found to be promising candidates for 64 and 256Mb ULSI DRAM applications. (C) 1997 Elsevier Science S.A.