198 resultados para strong electric fields
Resumo:
Plasmonic interactions in a well-defined array of metallic nanoparticles can lead to interesting optical effects, such as local electric field enhancement and shifts in the extinction spectra, which are of interest in diverse technological applications, including those pertaining to biochemical sensing and photonic circuitry. Here, we report on a single-step wafer scale fabrication of a three-dimensional array of metallic nanoparticles whose sizes and separations can be easily controlled to be anywhere between fifty to a few hundred nanometers, allowing the optical response of the system to be tailored with great control in the visible region of the spectrum. The substrates, apart from having a large surface area, are inherently porous and therefore suitable for optical sensing applications, such as surface enhanced Raman scattering, containing a high density of spots with enhanced local electric fields arising from plasmonic couplings.
Resumo:
Nearly monodisperse spherical magnetite (Fe3O4) nanoparticles are prepared by colloidal chemistry route. Magnetic and electronic transport properties of the annealed pellets of these nanoparticles are reported. Effect of external magnetic and electric fields on the magnetic and transport properties of the material are studied as a function of temperature. We find that the highest resistance state of the ferromagnetic system occurs at a magnetic field which is approximately equal to its magnetic coercivity; this establishes the magnetoresistance (MR) in this system to be of the conventional tunnelling type MR as against the spin-valve type MR found more recently in some ferromagnetic oxide systems. The material also shows electroresistance (ER) property with its low-temperature resistance being strongly dependent on the excitation current that is used for the measurement. This ER effect is concluded to be intrinsic to the material and is attributed to the electric field-induced melting of the charge-order state in magnetite.
Resumo:
We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.
Resumo:
The lattice strain and domain switching behavior of xBiScO(3)-(1-x) PbTiO3 (x = 0.40) was investigated as a function of cyclic field and grain orientation by in situ X-ray diffraction during application of electric fields. The electric field induced 200 lattice strain was measured to be five times larger than the 111 lattice strain in pseudorhombohedral xBiScO(3)-(1-x) PbTiO3 (x = 0.40). It is shown that the anomalous 200 lattice strain is not an intrinsic phenomenon, but arises primarily due to stress associated with the reorientation of the 111 domains in dense polycrystalline ceramic. (C) 2015 AIP Publishing LLC.
Resumo:
We present the results of a theoretical study of a four-level atomic system in vee + ladder configuration using a density matrix analysis. The absorption and dispersion profiles are derived for a weak probe field and for varying strengths of the two strong control fields. For specificity, we choose energy levels of Rb-87, and present results for both stationary atoms and moving atoms in room temperature vapor. An electromagnetically induced absorption (EIA) peak with negative dispersion is observed at zero probe de-tuning when the control fields have equal strengths, which switches to electromagnetically induced transparency (ET) with positive dispersion (due to splitting of the EIA peak) when the control fields are unequal. There is significant linewidth narrowing in thermal vapor. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (L-alpha) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the L-alpha phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the L-alpha phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
Townsend's first ionization coefficients have been measured in corssed electric and magnetic fields for values of B/p ranging from 0.013 TESLA. TORR-1 to 0.064 TESLA.TORR-1 and for 103 x 102¿ E/p 331 x 102 V.M-1. TORR-1 in oxygen and for 122 x 102¿ E/pÂ488 x 102 V.M-1.TORR-1 for dry air. The values of effective collision frequencies determined from the equivalent pressure (pe) concept generally increase with E/p at constant B/p and decrease with increasing B/p at constant E/p. Effective collision frequencies determined from measured sparking potentials at high values of E/p increase with decreasing E/pe. The drift velocity and mean energy of electrons in oxygen in crossed electric and magnetic fields have been derived.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Sparking potentials have been measured in nitrogen and dry air between coaxial cylindrical electrodes for values of n = R2/R1 = approximately 1 to 30 (R1 = inner electrode radius, R2 = outer electrode radius) in the presence of crossed uniform magnetic fields. The magnetic flux density was varied from 0 to 3000 Gauss. It has been shown that the minimum sparking potentials in the presence of the crossed magnetic field can be evaluated on the basis of the equivalent pressure concept when the secondary ionization coefficient does not vary appreciably with B/p (B = magnetic flux density, p = gas pressure). The values of secondary ionization coefficients �¿B in nitrogen in crossed fields calculated from measured values of sparking potentials and Townsend ionization coefficients taken from the literature, have been reported. The calculated values of collision frequencies in nitrogen from minimum sparking potentials in crossed fields are found to increase with increasing B/p at constant E/pe (pe = equivalent pressure). Studies on the similarity relationship in crossed fields has shown that the similarity theorem is obeyed in dry air for both polarities of the central electrode in crossed fields.
Resumo:
We report an enhanced actuation in bulk carbon nanotubes (CNTs) under coupled electric and magnetic fields, which is much higher than that evaluated in the presence of individual fields. Coupled electric and magnetic fields induce a directional actuation demonstrating a transformation from polarity independent to dependent actuation behavior of CNTs. Both qualitative and quantitative analyses are performed to understand this transformation in the bulk CNTs. Moreover, actuations along radial and axial directions of CNTs have also demonstrated a similar directional behavior.
Resumo:
The system equations of a collisionless, unmagnetized plasma, contained in a box where a high frequency (HF) electric field is incident, are solved in the electrostatic approximation. The surface modes of the plasma in the semi-infinite and box geometry are investigated. In thi high frequency limit, the mode frequencies are not significantly changed by the HF field but their group velocities can be quite different. Two long wavelength low frequency modes, which are not excited in the absence of HF field, are found. These modes are true surface modes (decaying on one wavelength from the surface) unlike the only low frequency ion acoustic mode in the zero field case. In the short wavelength limit the low frequency mode occurs at omega i/ square root 2, omega i being the ion plasma frequency, as a result similar to the case of no HF field.
Resumo:
The system equations of a collisionless, unmagnetized plasma, contained in a box where a high frequency (h.f.1 electric field is incident, are solved in the electrostatic approximation. The surface modes of the plasma in the semi-infinite and box geometry are investigated. In the high frequency limit, the mode frequencies are not significantly changed by the h.f. field but their group velocities can be quite different. Two long wavelength low frequency modes, which are not excited in the absence of h.f. field, are found. These modes are true surface modes (decaying on one wavelength from the surface) unlike the only low frequency ion acoustic mode in the zero field case. In the short wavelength limit the low frequency mode occurs at &/2, oi being the ion plasma frequency, a result similar to the case of no h.f. field.
Resumo:
he notion of the gravity-induced electric field has been applied to an entire self-gravitating massive body. The resulting electric polarization of the otherwise neutral body, when taken in conjunction with the latter's rotation, is shown to generate an axial-magnetic field of the right type and order of magnitude for certain astrophysical objects. In the present treatment the electric polarization is calculated in the ion-continuum Thomas-Fermi approximation while the electrodynamics of the continuous medium is treated in the nonrelativistic approximation.
Resumo:
Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.