136 resultados para straw residues
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I' beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 -> 1 hydrogen bonds. In addition, a single 4 -> 1 hydrogen bond is also observed at the N-terminus. All live Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C-alpha-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean r values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Modification of tryptophan side chains of soybean agglutinin (SBA) with N-bromosuccinimide results in a loss of the hemagglutinating and carbohydrate binding activities of the protein. One residue/subunit is probably essential for the binding activity. Modification leads to a large decrease in the fluorescene of the protein accompained by a blue shift. Iodide ion quenching of the protein fluorescence shows that saccharide binding results in a decreased accessibility of some of the tryptophan side chains. These results strongly point towards the involvement of tryptophan residues in the active site of SBA.
Resumo:
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an similar to 60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix ( bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors.
Resumo:
In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.
Resumo:
The solution conformation of a designed tetradecapeptide Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (Dpg-14) containing two di-n-propyl glycine (Dpg) residues has been investigated by H-1 NMR and circular dichroism in organic solvents. The peptide aggregates formed at a concentration of 3 mm in the apolar solvent CDCl3 were broken by the addition of 12% v/v of the more polar solvent DMSO-d(6). Successive NiH <-> Ni+1H NOEs observed over the entire length of the sequence in this solvent mixture together with the observation of several characteristic medium-range NOEs support a major population of continuous helical conformations for Dpg-14. Majority of the observed coupling constants ((3)(alpha)(JNHC)(H)) also support phi values in the helical conformation. Circular dichroism spectra recorded in methanol and propan-2-ol give further support in favor of helical conformation for Dpg-14 and the stability of the helix at higher temperature. Copyright (C) 2010 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The conformation of an acyclic dehydrophenylalanine (delta Z-Phe) containing hexapeptide, Boc-Phe-delta Z-Phe-Val-Phe-delta Z-Phe-Val-OMe, has been investigated in CDCl3 and (CD3)2SO by 270-MHz 1H-nmr. Studies of NH group solvent accessibility and observation of interresidue nuclear Overhauser effects (NOEs) suggest a significant solvent-dependent conformational variability. In CDCl3, a population of folded helical conformations is supported by the inaccessibility to solvent of the NH groups of residues 3-6 and the detection of several NiH----Ni + 1H NOEs. Evidence is also obtained for conformational heterogeneity from the detection of some Ci alpha H----Ni + 1H NOEs characteristic of extended strands. In (CD3)2SO, the peptide largely favors an extended conformation, characterized by five solvent-exposed NH groups and successive Ci alpha H----Ni + 1H NOEs for the L-residues and Ci beta H----Ni + 1H NOEs for the delta Z-Phe residues. The results suggest that delta Z-Phe residues do not provide compelling conformational constraints.
Resumo:
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7 angstrom. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The monohydrate of the heptapeptide t-butyloxycarbonyl-(L-valyl-α-aminoiso-butyryl)3-L-valyl methyl ester crystallizes in the orthorhombic space group P212121 with four molecules in a unit cell with the dimensions α= 9.375, b = 19.413 and c = 25.878 ÅA. The structure has been solved by direct methods and refined to an R value of 0.059 for 3633 observed reflections. The molecule in the structure exists as a slightly distorted 310-helix stabilized by five 4 -> 1 intramolecular hydrogen bonds, indicating the overwhelming influence of α-aminoisobutyryl (Aib) residues in dictating helical fold even when a majority of residues in the peptide have a low intrinsic propensity to be in helices. Contrary to what is expected in helical structures, the valyl side chains, two of which are disordered, exhibit all three possible conformations. The molecules arrange themselves in a head-to-tail fashion along the c-axis. The columns thus generated pack nearly hexagonally in the crystal.
Resumo:
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Two new cyclohexadepsipeptides have been isolated from the fungus Isaria. Fungal growth in solid media yielded hyphal strands from which peptide fractions were readily isolable by organic-solvent extraction. Two novel cyclodepsipeptides, isaridin A and isaridin B, have been isolated by reverse-phase HPLC, and characterized by ESI-MS and 1H-NMR. Single crystals of both peptides have been obtained, and their 3D structures were elucidated by X-ray diffraction. The isaridins contain several unusual amino acid residues. The sequences are cyclo(β-Gly-HyLeu-Pro-Phe-NMeVal-NMePhe) and cyclo(β-Gly-HyLeu-β-MePro-Phe-NMeVal-NMePhe), where NMeVal is N-methylvaline, NMePhe N-methylphenylalanine, and HyLeu hydroxyleucine (=2-hydroxy-4-methylpentanoic acid). The two peptides differ from one another at residue 3, isaridin A having an (S)-proline at this position, while β-methyl-(S)-proline (=(2S,3S)-2,3,4,5-tetrahydro-3-methyl-1H-pyrrole-2-carboxylic acid) is found in isaridin B. The solid-state conformations of both cyclic depsipeptides are characterized by the presence of two cis peptide bonds at HyLeu(2)-Pro(3)/HyLeu(2)-β-MePro(3) and NMeVal(5)-NMePhe(6), respectively. In isaridin A, a strong intramolecular H-bond is observed between Phe(4)CO⋅⋅⋅HNβ-Gly(1), and a similar, but weaker, interaction is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4). In contrast, in isaridin B, only a single intramolecular H-bond is observed between β-Gly(1)CO⋅⋅⋅HNPhe(4
Resumo:
A polymeric sorbent containing triphenylphosphinimine residues has been obtained from crosslinked chloromethylated polystyrene by azidation, using phase-transfer catalysis, followed by reaction with triphenylphosphine at room temperature. The sorbent exhibits 100 % sorption selectivity for Fe(III) in the presence of Cu(II), Fe(II), Ni(II), Co(II), Mn(II), and Zn(II) in aqueous media. In the absence of Fe(III), however, Fe(II) is selectively sorbed over the other metal ions, and in the absence of both Fe(II) and Fe(III), Cu(II) has the highest selectivity of sorption on the resin. The sorption of Fe(III) is sensitive to pH, being maximum at pH not, vert, similar 2 and falling sharply at both higher and lower pH values. The sorbed Fe(III) is easily stripped with dilute HCl and the resulting protonated resin is regenerated to its original sorption capacity by treatment with dilute NaOH at room temperature.
Resumo:
The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.