56 resultados para spatio-temporal
Resumo:
Realizing the importance of aerosol characterization and addressing its spatio-temporal heterogeneities over Bay of Bengal (BoB), campaign mode observations of aerosol parameters were carried out using simultaneous cruise, aircraft and land-based measurements during the Winter Integrated Campaign for Aerosols gases and Radiation Budget (W_ICARB). Under this, airborne measurements of total and hemispheric backscatter coefficients were made over several regions of coastal India and eastern BoB using a three wavelength integrating nephelometer. The measurements include high resolution multi-level (ML) sorties for altitude profiles and bi-level (BL) sorties for spatial gradients within and above the Marine Atmospheric Boundary Layer (MABL) over BoB. The vertical profiles of the scattering coefficients are investigated in light of the information on the vertical structure of the atmospheric stability, which was derived from the collocated GPS (Global Positioning System) aided radiosonde ascents. In general, the altitude profiles revealed that the scattering coefficient remained steady in the convectively well-mixed regions and dropped off above the MABL. This decrease was quite rapid off the Indian mainland, while it was more gradual in the eastern BoB. Investigation on horizontal gradients revealed that the scattering coefficients over northern BoB are 3 to 4 times higher compared to that of central BoB within and above the MABL. A north-south gradient in scattering coefficients is observed over Port Blair in the eastern BoB, with values decreasing from south to north, which is attributed to the similar gradient in the surface wind speed, which can be replicated in the sea salt abundance. The gradients are parameterized using best-fit analytical functions.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
In a typical sensor network scenario a goal is to monitor a spatio-temporal process through a number of inexpensive sensing nodes, the key parameter being the fidelity at which the process has to be estimated at distant locations. We study such a scenario in which multiple encoders transmit their correlated data at finite rates to a distant and common decoder. In particular, we derive inner and outer bounds on the rate region for the random field to be estimated with a given mean distortion.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
Land cover (LC) and land use (LU) dynamics induced by human and natural processes play a major role in global as well as regional patterns of landscapes influencing biodiversity, hydrology, ecology and climate. Changes in LC features resulting in forest fragmentations have posed direct threats to biodiversity, endangering the sustainability of ecological goods and services. Habitat fragmentation is of added concern as the residual spatial patterns mitigate or exacerbate edge effects. LU dynamics are obtained by classifying temporal remotely sensed satellite imagery of different spatial and spectral resolutions. This paper reviews five different image classification algorithms using spatio-temporal data of a temperate watershed in Himachal Pradesh, India. Gaussian Maximum Likelihood classifier was found to be apt for analysing spatial pattern at regional scale based on accuracy assessment through error matrix and ROC (receiver operating characteristic) curves. The LU information thus derived was then used to assess spatial changes from temporal data using principal component analysis and correspondence analysis based image differencing. The forest area dynamics was further studied by analysing the different types of fragmentation through forest fragmentation models. The computed forest fragmentation and landscape metrics show a decline of interior intact forests with a substantial increase in patch forest during 1972-2007.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June-September), with a peak during July-August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse rain-gauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
Combustion instability events in lean premixed combustion systems can cause spatio-temporal variations in unburnt mixture fuel/air ratio. This provides a driving mechanism for heat-release oscillations when they interact with the flame. Several Reduced Order Modelling (ROM) approaches to predict the characteristics of these oscillations have been developed in the past. The present paper compares results for flame describing function characteristics determined from a ROM approach based on the level-set method, with corresponding results from detailed, fully compressible reacting flow computations for the same two dimensional slot flame configuration. The comparison between these results is seen to be sensitive to small geometric differences in the shape of the nominally steady flame used in the two computations. When the results are corrected to account for these differences, describing function magnitudes are well predicted for frequencies lesser than and greater than a lower and upper cutoff respectively due to amplification of flame surface wrinkling by the convective Darrieus-Landau (DL) instability. However, good agreement in describing function phase predictions is seen as the ROM captures the transit time of wrinkles through the flame correctly. Also, good agreement is seen for both magnitude and phase of the flame response, for large forcing amplitudes, at frequencies where the DL instability has a minimal influence. Thus, the present ROM can predict flame response as long as the DL instability, caused by gas expansion at the flame front, does not significantly alter flame front perturbation amplitudes as they traverse the flame. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Muscle development is a multistep process which includes myoblast diversification, proliferation, migration, fusion, differentiation and growth. A hierarchical exhibition of myogenic factors is important for dexterous execution of progressive events in muscle formation. EWG (erect wing) is a transcription factor known to have a role in indirect flight muscle development (IFM) in Drosophila. We marked out the precise spatio-temporal expression profile of EWG in the myoblasts, and in the developing muscles. Mutant adult flies null for EWG in myoblasts show variable number of IFM, suggesting that EWG is required for patterning of the IFM. The remnant muscle found in the EWG null flies show proper assembly of the structural proteins, which implies that some myoblasts manage to fuse, develop and differentiate normally indicating that EWG is not required for differentiation program per se. However, when EWG expression is extended beyond its expression window in a wild type background, muscle thinning is observed implying EWG function in protein synthesis inhibition. Mis-expression studies in wing disc myoblasts hinted at its role in myoblast proliferation. We thus conclude that EWG is important for regulating fusion events which in turn decides the IFM pattern. Also IFM in EWG null mutants show clumps containing broken fibres and an altered mitochondrial morphology. The vertebrate homolog of EWG is nuclear respiratory factor1 (NRF1) which is known to have a function in mitochondrial biogenesis and protection against oxidative stress. Gene expression for inner mitochondrial membrane protein, Opa1-like was found to be absent in these mutants. Also, these flies were more sensitive to oxidative stress, indicating a compromised mitochondrial functioning. Our results therefore demonstrate that EWG functions in maintaining muscles’ structural integrity by ensuing proper mitochondrial activity.
Resumo:
Confined supersonic mixing layer is explored through model-free simulations. Both two- and three-dimensional spatio-temporal simulations were carried out employing higher order finite difference scheme as well as finite volume scheme based on open source software (OpenFOAM) to understand the effect of three-dimensionality on the development of mixing layer. It is observed that although the instantaneous structures exhibit three-dimensional features, the average pressure and velocities are predominantly two-dimensional. The computed wall pressures match well with experimental results fairly well, although three-dimensional simulation underpredicts the wall pressure in the downstream direction. The self-similarity of the velocity profiles is obtained within the duct length for all the simulations. Although the mixing layer thicknesses differ among different simulations, their growth rate is nearly the same. Significant differences are observed for species and temperature distribution between two- and three-dimensional calculations, and two-dimensional calculations do not match the experimental observation of smooth variations in species mass fraction profiles as reported in literature. Reynolds stress distribution for three-dimensional calculations show profiles with less peak values compared to two-dimensional calculations; while normal stress anisotropy is higher for three-dimensional case.
Resumo:
Adaptive Mesh Refinement is a method which dynamically varies the spatio-temporal resolution of localized mesh regions in numerical simulations, based on the strength of the solution features. In-situ visualization plays an important role for analyzing the time evolving characteristics of the domain structures. Continuous visualization of the output data for various timesteps results in a better study of the underlying domain and the model used for simulating the domain. In this paper, we develop strategies for continuous online visualization of time evolving data for AMR applications executed on GPUs. We reorder the meshes for computations on the GPU based on the users input related to the subdomain that he wants to visualize. This makes the data available for visualization at a faster rate. We then perform asynchronous executions of the visualization steps and fix-up operations on the CPUs while the GPU advances the solution. By performing experiments on Tesla S1070 and Fermi C2070 clusters, we found that our strategies result in 60% improvement in response time and 16% improvement in the rate of visualization of frames over the existing strategy of performing fix-ups and visualization at the end of the timesteps.