218 resultados para spatially varying object pixel density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the evolution of polymer structure and its influence on uniaxial anisotropic stress under time-varying uniaxial strain, and the role of external control variables such as temperature, strain rate, chain length, and density, using molecular dynamics simulation. At temperatures higher than glass transition, stress anisotropy in the system is reduced even though the bond stretch is greater at higher temperatures. There is a significant increase in the stress level with increasing density. At higher densities, the uncoiling of the chains is suppressed and the major contribution to the deformation is by internal deformation of the chains. At faster rates of loading stress anisotropy increases. The deformation mechanism is mostly due to bond stretch and bond bending rather than overall shape and size. Stress levels increase with longer chain length. There is a critical value of the functionality of the cross-linkers beyond which the uniaxial stress developed increases caused primarily by bond stretching due to increased constraint on the motion of the monomers. Stacking of the chains in the system also plays a dominant role in the behaviour in terms of excluded volume interactions. Low density, high temperature, low values of functionality of cross-linkers, and short chain length facilitate chain uncoiling and chain slipping in cross-linked polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many meteorological phenomena occur at different locations simultaneously. These phenomena vary temporally and spatially. It is essential to track these multiple phenomena for accurate weather prediction. Efficient analysis require high-resolution simulations which can be conducted by introducing finer resolution nested simulations, nests at the locations of these phenomena. Simultaneous tracking of these multiple weather phenomena requires simultaneous execution of the nests on different subsets of the maximum number of processors for the main weather simulation. Dynamic variation in the number of these nests require efficient processor reallocation strategies. In this paper, we have developed strategies for efficient partitioning and repartitioning of the nests among the processors. As a case study, we consider an application of tracking multiple organized cloud clusters in tropical weather systems. We first present a parallel data analysis algorithm to detect such clouds. We have developed a tree-based hierarchical diffusion method which reallocates processors for the nests such that the redistribution cost is less. We achieve this by a novel tree reorganization approach. We show that our approach exhibits up to 25% lower redistribution cost and 53% lesser hop-bytes than the processor reallocation strategy that does not consider the existing processor allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of resonant column tests have been performed in the torsional mode of vibration to assess the effect of saturation, starting from the near dry state to the fully saturated state, on the damping ratio of sands corresponding to the threshold strain level. Tests were carried out on three different gradations of sand for various combinations of relative density and effective confining pressure. For fine sands, a certain optimum degree of saturation exists at which the damping ratio minimizes; it is known that a decrease in Sr from a fully saturated state leads to a continuous increase in the matric suction. With an increase in the relative density, the optimum degree of saturation for fine sand increases marginally from 1.38 to 1.49%, but does not show any dependency on the effective confining pressure. In contrast, the minimum values of the damping ratio for medium and coarse sands are found to always correspond to the near dry state. The damping ratio decreases continuously with increases in relative density and effective confining pressure. The threshold strain level has been found to decrease continuously with increases in relative density and effective confining pressure. (C) 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number Lambda) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at Lambda similar to 1, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at Lambda similar to 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salient object detection has become an important task in many image processing applications. The existing approaches exploit background prior and contrast prior to attain state of the art results. In this paper, instead of using background cues, we estimate the foreground regions in an image using objectness proposals and utilize it to obtain smooth and accurate saliency maps. We propose a novel saliency measure called `foreground connectivity' which determines how tightly a pixel or a region is connected to the estimated foreground. We use the values assigned by this measure as foreground weights and integrate these in an optimization framework to obtain the final saliency maps. We extensively evaluate the proposed approach on two benchmark databases and demonstrate that the results obtained are better than the existing state of the art approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results of molecular dynamics investigations into neutral impurity diffusing within an amorphous solid as a function of the size of the diffusant and density of the host amorphous matrix. We find that self diffusivity exhibits an anomalous maximum as a function of the size of the impurity species. An analysis of properties of the impurity atom with maximum diffusivity shows that it is associated with lower mean square force, reduced backscattering of velocity autocorrelation function, near-exponential decay of the intermediate scattering function (as compared to stretched-exponential decay for other sizes of the impurity species) and lower activation energy. These results demonstrate the existence of size-dependent diffusivity maximum in disordered solids. Further, we show that the diffusivity maximum is observed at lower impurity diameters with increase in density. This is explained in terms of the Levitation parameter and the void structure of the amorphous solid. We demonstrate that these results imply contrasting dependence of self diffusivity (D) on the density of the amorphous matrix, p. D increases with p for small sizes of the impurity but shows an increase followed by a decrease for intermediate sizes of the impurity atom. For large sizes of the impurity atom, D decreases with increase in p. These contrasting dependence arises naturally from the existence of Levitation Effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a study of the variation of natural frequencies with respect to the length of the stiffener of a square panel clamped all along its boundary and stiffened in the middle by a concentric stiffener were recently reported [ 11. Significant increases in certain frequencies, namely those with modes symmetric about both the medians of the plate, were observed when small gaps were not left between the plate boundary and the stiffener end. As an extension to that work, results of a study of the effect of the eccentricity of the stiffener on the frequency variation with the length of the stiffener are reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability characteristics of Alfvén Internal gravity waves for an inviscid, nondissipative, Boussinesq fluid undergoing shear in the presence of a density discontinuity with and without a rigid boundary is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the tunneling density of states (TDOS) for a junction of three Tomonaga-Luttinger liquid wires. We show that there are fixed points which allow for the enhancement of the TDOS, which is unusual for Luttinger liquids. The distance from the junction over which this enhancement occurs is of the order of x=v/(2 omega), where v is the plasmon velocity and omega is the bias frequency. Beyond this distance, the TDOS crosses over to the standard bulk value independent of the fixed point describing the junction. This finite range of distances opens up the possibility of experimentally probing the enhancement in each wire individually.