52 resultados para scale effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanoplate are studied with consideration of the surface effects as well as the nonlocal small-scale effects. Nonlocal elasticity theory of plate is used to derive the general differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties on the flexural waves of nanoplates is more significant. It can be found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. The scale effects show that the wavenumbers of the flexural wave become highly non-linear and tend to infinite at certain frequency. After that frequency the wave will not propagate and the corresponding wave velocities tend to zero at that frequency (escape frequency). The effects of surface stresses on the wave propagation properties of nanoplate are also captured in the present work. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic wave propagation in a graphene sheet, which is embedded in an elastic medium, is studied using nonlocal elasticity theory incorporating small-scale effects. The graphene sheet is modeled as an one-atom thick isotropic plate and the elastic medium/substrate is modeled as distributed springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. After that, an ultrasonic type of wave propagation model is also derived. The explicit expressions for the cut-off frequencies are also obtained as functions of the nonlocal scaling parameter and the y-directional wavenumber. Local elasticity shows that the wave will propagate even at higher frequencies. But nonlocal elasticity predicts that the waves can propagate only up to certain frequencies (called escape frequencies), after which the wave velocity becomes zero. The results also show that the escape frequencies are purely a function of the nonlocal scaling parameter. The effect of the elastic medium is captured in the wave dispersion analysis and this analysis is explained with respect to both local and nonlocal elasticity. The simulations show that the elastic medium affects only the flexural wave mode in the graphene sheet. The presence of the elastic matrix increases the band gap of the flexural mode. The present results can provide useful guidance for the design of next-generation nanodevices in which graphene-based composites act as a major element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. 2. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8-50ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. 3. We found that at very small spatial grains (0.04ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25ha, 1ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. 4. Synthesis. This is the first cross-site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale-dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04ha) to slightly larger scales (0.25 and 1ha). This needs to be recognized in forest conservation policy and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally study the effect of having hinged leaflets at the jet exit on the formation of a two-dimensional counter-rotating vortex pair. A piston-cylinder mechanism is used to generate a starting jet from a high-aspect-ratio channel into a quiescent medium. For a rigid exit, with no leaflets at the channel exit, the measurements at a central plane show that the trailing jet in the present case is never detached from the vortex pair, and keeps feeding into the latter, unlike in the axisymmetric case. Passive flexibility is introduced in the form of rigid leaflets or flaps that are hinged at the exit of the channel, with the flaps initially parallel to the channel walls. The experimental arrangement closely approximates the limiting case of a free-to-rotate rigid flap with negligible structural stiffness, damping and flap inertia, as these limiting structural properties permit the largest flap openings. Using this arrangement, we start the flow and measure the flap kinematics and the vorticity fields for different flap lengths and piston velocity programs. The typical motion of the flaps involves a rapid opening and a subsequent more gradual return to its initial position, both of which occur when the piston is still moving. The initial opening of the flaps can be attributed to an excess pressure that develops in the channel when the flow starts, due to the acceleration that has to be imparted to the fluid slug between the flaps. In the case with flaps, two additional pairs of vortices are formed because of the motion of the flaps, leading to the ejection of a total of up to three vortex pairs from the hinged exit. The flaps' length (L-f) is found to significantly affect flap motions when plotted using the conventional time scale L/d, where L is the piston stroke and d is the channel width. However, with a newly defined time scale based on the flap length (L/L-f), we find a good collapse of all the measured flap motions irrespective of flap length and piston velocity for an impulsively started piston motion. The maximum opening angle in all these impulsive velocity program cases, irrespective of the flap length, is found to be close to 15 degrees. Even though the flap kinematics collapses well with L/L-f, there are differences in the distribution of the ejected vorticity even for the same L/L-f. Such a redistribution of vorticity can lead to important changes in the overall properties of the flow, and it gives us a better understanding of the importance of exit flexibility in such flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of meridional variation of sea surface temperature (SST) on tropical atmospheric circulation is analyzed using Aqua-planet Experiment (APE) simulations. The meridional SST gradient around the narrow SST peak in CONTROL simulation favours a strong and single equatorial Intertropical Convergence Zone (ITCZ, defined by the maximum of zonally averaged total precipitation) in all APE models. In contrast, flat equatorial SST peak (FLAT simulation) favours split/double ITCZs flanking the SST maximum, in the majority of the APE models. Although there is reasonable agreement for SST sensitivity of ITCZ among the APE models in CONTROL, there exists disparity among them in FLAT case. Similarly, while the total and convective precipitation responses are consistent among the models, the large-scale precipitation response shows considerable inter-model variations in FLAT case. The APE intercomparison indicates that the occurrence and positioning of the ITCZ are primarily related to boundary layer moisture convergence as a response to the meridional variation of SST. Furthermore, the meridional gradient of tropospheric temperature is found to be an important factor that can influence the positioning of ITCZ. FLAT SST distribution is found to be similar to the observed distribution over the Indian region during summer season. Models that yield double ITCZs in this case simulate an easterly jet over the equatorial region (similar to 15 degrees equatorward of the ITCZ). This is analogous to the Tropical Easterly Jet (TEJ), which is a unique feature observed over the Indian region during summer monsoon season, with its core at 12 degrees N, equatorward of the seasonal convergence zone centered along 25 degrees N. In these models, positive meridional temperature gradient and the associated easterly shear in the atmosphere strengthened by moisture convergence penetrate up to the upper troposphere, with which TEJ is in thermal wind balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of an amorphous cobalt based oxygen evolution catalyst called Co-Pi has been recently reported from a neutral phosphate buffer solution containing Co2+. But the concentration of Co2+ is as low as 0.5 mM due to poor solubility of a cobalt salt in phosphate medium. In the present study, a cobalt acetate based oxygen evolution catalyst (Co-Ac) is prepared from a neutral acetate buffer solution, where the solubility of Co2+ is very high (>100 times in comparison with phosphate buffer solution). The Co-Ac possesses better catalytic activity than the Co-Pi with an additional advantage of easy bulk scale preparation. The comparative studies on the oxygen evolution reaction (OER) activity of Co-Ac and Co-Pi in phosphate and acetate buffer electrolytes reveal that the Co-Ac exhibits enhanced synergistic catalytic activity in phosphate solution, probably due to partial substitution of acetate in the catalyst layer by phosphate, resulting in the formation of a Co-Ac-Pi catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm. (C) 2014 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by similar to 33 degrees C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (xi) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a transient two-dimensional numerical study of double-diffusive salt fingers in a two-layer heat-salt system for a wide range of initial density stability ratio (R-rho 0) and thermal Rayleigh numbers (Ra-T similar to 10(3) - 10(11)). Salt fingers have been studied for several decades now, but several perplexing features of this rich and complex system remain unexplained. The work in question studies this problem and shows the morphological variation in fingers from low to high thermal Rayleigh numbers, which have been missed by the previous investigators. Considerable variations in convective structures and evolution pattern were observed in the range of Ra-T used in the simulation. Evolution of salt fingers was studied by monitoring the finger structures, kinetic energy, vertical profiles, velocity fields, and transient variation of R-rho(t). The results show that large scale convection that limits the finger length was observed only at high Rayleigh numbers. The transition from nonlinear to linear convection occurs at about Ra-T similar to 10(8). Contrary to the popular notion, R-rho(t) first decrease during diffusion before the onset time and then increase when convection begins at the interface. Decrease in R-rho(t) is substantial at low Ra-T and it decreases even below unity resulting in overturning of the system. Interestingly, all the finger system passes through the same state before the onset of convection irrespective of Rayleigh number and density stability ratio of the system. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature of allotropic phase transformation in ZnS (cubic to wurtzite) changes with pressure and particle size. In this paper we have explored the interrelation among these through a detailed study of ZnS powders obtained by a temperature-controlled high energy milling process. By employing the combined effect of temperature and pressure in an indigenously built cryomill, we have demonstrated a large-scale, low-temperature synthesis of wurtzite ZnS nanoparticles. The synthesized products have been characterized for their phase and microstructure by the use of X-ray diffraction and transmission electron microscopic techniques. Further, it has been demonstrated that the synthesized materials exhibit photoluminescence emissions in the UV-visible region with an unusual doublet pattern due to the presence of both cubic and hexagonal wurtzite domains in the same particles. By further fine-tuning the processing conditions, it may be possible to achieve controlled defect related photoluminescence emissions from the ZnS nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.