152 resultados para rice transformation
Resumo:
Crack loading and crack extension in pseudoelastic binary NiTi shape memory alloy (SMA) miniature compact tension (CT) specimens with 50.7 at.% Ni (austenitic, pseudoelastic) was investigated using infrared (IR) thermography during in situ loading and unloading. IR thermographic measurements allow for the observation of heat effects associated with the stress-induced transformation of martensite from B2 to BIT during loading and the reverse transformation during unloading. The results are compared with optical images and discussed in terms of the crack growth mechanisms in pseudoelastic NiTi SMAs. Direct experimental evidence is presented which shows that crack growth occurs into a stress-induced martensitic microstructure, which immediately retransforms to austenite in the wake of the crack.
Resumo:
Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.
Resumo:
Induction motor is a typical member of a multi-domain, non-linear, high order dynamic system. For speed control a three phase induction motor is modelled as a d–q model where linearity is assumed and non-idealities are ignored. Approximation of the physical characteristic gives a simulated behaviour away from the natural behaviour. This paper proposes a bond graph model of an induction motor that can incorporate the non-linearities and non-idealities thereby resembling the physical system more closely. The model is validated by applying the linearity and idealities constraints which shows that the conventional ‘abc’ model is a special case of the proposed generalised model.
Resumo:
A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Some transformation reactions of α-pinene to give 4- and 3-membered ring compounds, not hitherto obtained from this source, are described. The study furnished a convenient method of preparation of the optically active cyclobutanone IVa, the title compound which served as the key substrate for all the transformations reported.
Resumo:
The synthesis, characterization and photophysical properties of a 4f-3d mixed metal compound, Gd(H2O)(3)Co[C5N1H3-(COO)(2)](3), are described; the structure is unique, consisting of sheets with large pores ( ca. 7 angstrom diameter) in the sheets and transforms to a perovskite oxide at moderate temperatures.
Resumo:
The C→A transformation of Pr2O3 has been examined. The transformation is sluggish and takes place at and above 750°C. C-Pr2O3 is oxidized at a lower temperature than the A-form and oxidation proceeds in two stages in both cases. A hydrate Pr 2O3 . H2O, formed by the interaction of C-Pr2O3 and water at relatively high temperature, is described and its behaviour compared with that of Pr(OH)3. The C-form undergoes hydration at 40°C while the A-form does not. All the observations have been explained in terms of the defect structure of C-Pr2O 3.
Resumo:
In sub-humid South India, recent studies have shown that black soil areas (Vertisols and vertic Intergrades), located on flat valley bottoms, have been rejuvenated through the incision of streambeds, inducing changes in the pedoclimate and soil transformation. Joint pedological, geochemical and geophysical investigations were performed in order to better understand the ongoing processes and their contribution to the chemistry of local rivers. The seasonal rainfall causes cycles of oxidation and reduction in a perched watertable at the base of the black soil, while the reduced solutions are exported through a loamy sand network. This framework favours a ferrolysis process, which causes low base saturation and protonation of clay, leading to the weathering of 2:1 then 1:1 clay minerals. Maximum weathering conditions occur at the very end of the wet season, just before disappearance of the perched watertable. Therefore, the by-products of soil transformation are partially drained off and calcareous nodules, then further downslope, amorphous silica precipitate upon soil dehydration. The ferrolysed area is fringing the drainage system indicating that its development has been induced by the streambed incision. The distribution of C-14 ages of CaCO3 nodules suggests that the ferrolysis process started during the late Holocene, only about 2 kyr B.P. at the studied site and about 5 kyr B.P. at the watershed outlet. The results of this study are applied to an assessment of the physical erosion rate (4.8x10(-3) m/kyr) since the recent reactivation of the erosion process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The particle size and crystallite size of anatase increase markedly in the region of the crystal structure transformation. The unit cell of anatase seems to expand prior to the transformation to rutile. This expansion has been attributed to a displacive transformation of the type defined by Buerger. Smaller particle size and larger surface area seem to favour the transformation. The kinetics of the transformation of anatase prepared by the hydrolysis of titanium sulphate have been studied at different temperatures and are found to be considerably different from the kinetics of the transformation of pure anatase. The transformation becomes immeasurably slow below ∼695 ± 10°C compared to ∼610°C for pure anatase. An induction period is observed in the transformation of anatase obtained from sulphate hydrolysis and the duration decreases with increase in temperature. The activation energy is ∼120 kcal/mole, a value higher than that for the pure anatase-rutile transformation. The results have been interpreted in terms of the relative rates of nucleation and propagation processes. The activation energy for the nucleation process seems to be much larger than for the propagation process. The kinetics of the transformation of anatase samples doped with different amounts of sulphate ion impurity have also been studied and the transformation is found to be progressively decelerated with increase in the impurity concentration. The energy of activation for the transformation appears to increase progressively with increase in impurity concentration.
Resumo:
Brookite, the orthorhombic modification of titanium dioxide, transforms to the tetragonal modification, rutile, on heating. The kinetics and energetics of the transformation have been studied. Below 715±10°C, the rate of transformation is extremely slow. There appears to be little or no induction time. The kinetic data can be fitted reasonably well by the first-order equation. The energy of activation is about 60 kcal/mole and the frequency factor is of the order of 1013 h-1. The entropy of activation from Eyring's theory is about -18 cal/mole deg. at 800°C. The heat of this transformation is -100±75 cal/mole. The kinetic results may be explained qualitatively in terms of various analogies but more clearly by the application of the order-disorder theory to diffusionless transformation in solids. It has been shown that the ratio of propagation rate constant to the nucleation rate constant is small and that there is little or negligible phase aggregation.
Resumo:
Five new thiosulfate based inorganic-organic hybrid open-framework compounds have been synthesized employing mild reaction conditions. Of the five compounds, [Na-2(H2O)(8)][Cd(C10H8N2)( S2O3)(2)]center dot 2H(2)O, I and [Cd-2(C10H8N2)(2)(HS2O3)(2)(S2O3)(2)][(C10H9N2)(2)(C10H8N2)(2)]center dot 8H(2)O, II have one-dimensional (1D) structures and [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III, [Cd-2(C10H8N2)(3)(S2O3)(2)], IV and [Cd-2(C10H8N2)(2.5)(S2O3)(2)], V have three- dimensional (3D) structures. The 1D structures are somewhat related, formed by the bonding between tetrahedral Cd centers (CdN2S2) and 4,4'-bipyridine (bpy) units. The inter-chain spaces are occupied by the hanging thiosulfate units in both the cases along with Na(H2O)(6) chains in I and free bpy units in II. The three 3D structures have one-dimensional cadmium thiosulfate chains linked by bpy units. Interpenetration has been observed in all the 3D structures. The 3D structures appear to be related and can be derived from fgs net. Transformation studies on the 1D compound, [Na-2(H2O)(8)][Cd(C10H8N2)(S2O3)(2)]center dot 2H(2)O, I, indicated a facile formation of [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III. Prolonged heating of I gave rise to a 3D cadmium sulfate phase, [Cd-2(C10H8N2)(2)(H2O)(3)(SO4)(2)]center dot 2H(2)O, VI. Compound VI has one-dimensional cadmium sulfate chains formed by six-membered rings connected by bpy units to form a 3D structure, which appears to resemble the topological arrangement of III. Transformation studies of III indicates the formation of IV and V, and at a higher temperature a new 3D cadmium sulfate, [Cd(C10H8N2)(SO4)], VII. Compound VII has a 4 x 4 grid cadmium sulfate layers pillared by bpy units. All the compounds were characterized by PXRD, TGA, IR and UV-visible studies. Preliminary studies on the possible use of the 3D compounds (III-VII) in heterogeneous cyanosilylation of imines appear to be promising.