141 resultados para relay racing
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
A decode and forward protocol based Trellis Coded Modulation (TCM) scheme for the half-duplex relay channel, in a Rayleigh fading environment, is presented. The proposed scheme can achieve any spectral efficiency greater than or equal to one bit per channel use (bpcu). A near-ML decoder for the suggested TCM scheme is proposed. It is shown that the high Signal to Noise Ratio (SNR) performance of this near-ML decoder approaches the performance of the optimal ML decoder. Based on the derived Pair-wise Error Probability (PEP) bounds, design criteria to maximize the diversity and coding gains are obtained. Simulation results show a large gain in SNR for the proposed TCM scheme over uncoded communication as well as the direct transmission without the relay.
Resumo:
We propose energy harvesting technologies and cooperative relaying techniques to power the devices and improve reliability. We propose schemes to (a) maximize the packet reception ratio (PRR) by cooperation and (b) minimize the average packet delay (APD) by cooperation amongst nodes. Our key result and insight from the testbed implementation is about total data transmitted by each relay. A greedy policy that relays more data under a good harvesting condition turns out to be a sub optimal policy. This is because, energy replenishment is a slow process. The optimal scheme offers a low APD and also improves PRR.
Resumo:
In this letter, we compute the secrecy rate of decode-and-forward (DF) relay beamforming with finite input alphabet of size M. Source and relays operate under a total power constraint. First, we observe that the secrecy rate with finite-alphabet input can go to zero as the total power increases, when we use the source power and the relay weights obtained assuming Gaussian input. This is because the capacity of an eavesdropper can approach the finite-alphabet capacity of 1/2 log(2) M with increasing total power, due to the inability to completely null in the direction of the eavesdropper. We then propose a transmit power control scheme where the optimum source power and relay weights are obtained by carrying out transmit power (source power plus relay power) control on DF with Gaussian input using semi-definite programming, and then obtaining the corresponding source power and relay weights which maximize the secrecy rate for DF with finite-alphabet input. The proposed power control scheme is shown to achieve increasing secrecy rates with increasing total power with a saturation behavior at high total powers.
Resumo:
Given the significant gains that relay-based cooperation promises, the practical problems of acquisition of channel state information (CSI) and the characterization and optimization of performance with imperfect CSI are receiving increasing attention. We develop novel and accurate expressions for the symbol error probability (SEP) for fixed-gain amplify-and-forward relaying when the destination acquires CSI using the time-efficient cascaded channel estimation (CCE) protocol. The CCE protocol saves time by making the destination directly estimate the product of the source-relay and relay-destination channel gains. For a single relay system, we first develop a novel SEP expression and a tight SEP upper bound. We then similarly analyze an opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible, which results in new results that are accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Using insights gleaned from an asymptotic analysis, we also present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s).
Resumo:
In this paper, we evaluate secrecy rates in cooperative relay beamforming in the presence of imperfect channel state information (CSI) and multiple eavesdroppers. A source-destination pair aided by.. out of.. relays, 1 <= k <= M, using decode-and-forward relay beamforming is considered. We compute the worst case secrecy rate with imperfect CSI in the presence of multiple eavesdroppers, where the number of eavesdroppers can be more than the number of relays. We solve the optimization problem for all possible relay combinations to find the secrecy rate and optimum source and relay weights subject to a total power constraint. We relax the rank-1 constraint on the complex semi-definite relay weight matrix and use S-procedure to reformulate the optimization problem that can be solved using convex semi-definite programming.
Resumo:
We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.
Resumo:
Opportunistic relay selection in a multiple source-destination (MSD) cooperative system requires quickly allocating to each source-destination (SD) pair a suitable relay based on channel gains. Since the channel knowledge is available only locally at a relay and not globally, efficient relay selection algorithms are needed. For an MSD system, in which the SD pairs communicate in a time-orthogonal manner with the help of decode-and-forward relays, we propose three novel relay selection algorithms, namely, contention-free en masse assignment (CFEA), contention-based en masse assignment (CBEA), and a hybrid algorithm that combines the best features of CFEA and CBEA. En masse assignment exploits the fact that a relay can often aid not one but multiple SD pairs, and, therefore, can be assigned to multiple SD pairs. This drastically reduces the average time required to allocate an SD pair when compared to allocating the SD pairs one by one. We show that the algorithms are much faster than other selection schemes proposed in the literature and yield significantly higher net system throughputs. Interestingly, CFEA is as effective as CBEA over a wider range of system parameters than in single SD pair systems.
Resumo:
We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of optimal placement of relay nodes along the straight line joining a source node and a destination node. The achievable rate formulas that we utilize are for full-duplex radios at the relays and decode-and-forward relaying. For the single relay case, and individual power constraints at the source node and the relay node, we provide explicit formulas for the optimal relay location and the optimal power allocation to the source-relay channel, for the exponential and the power-law path-loss channel models. For the multiple relay case, we consider exponential path-loss and a total power constraint over the source and the relays, and derive an optimization problem, the solution of which provides the optimal relay locations. Numerical results suggest that at low attenuation the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that a constant rate independent of the attenuation in the network can be achieved by placing a large enough number of relay nodes uniformly between the source and the destination, under the exponential path-loss model with total power constraint.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
In this letter, we analyze the end-to-end average bit error probability (ABEP) of space shift keying (SSK) in cooperative relaying with decode-and-forward (DF) protocol, considering multiple relays with a threshold based best relay selection, and selection combining of direct and relayed paths at the destination. We derive an exact analytical expression for the end-to-end ABEP in closed-form for binary SSK, where analytical results agree with simulation results. For non-binary SSK, approximate analytical and simulation results are presented.
Resumo:
Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.