56 resultados para reduced order models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies an ultrasonic wave dispersion characteristics of a nanorod. Nonlocal strain gradient models (both second and fourth order) are introduced to analyze the ultrasonic wave behavior in nanorod. Explicit expressions are derived for wave numbers and the wave speeds of the nanorod. The analysis shows that the fourth order strain gradient model gives approximate results over the second order strain gradient model for dynamic analysis. The second order strain gradient model gives a critical wave number at certain wave frequency, where the wave speeds are zero. A relation among the number of waves along the nanorod, the nonlocal scaling parameter (e(0)a), and the length of the nanorod is obtained from the nonlocal second order strain gradient model. The ultrasonic wave characteristics of the nanorod obtained from the nonlocal strain gradient models are compared with the classical continuum model. The dynamic response behavior of nanorods is explained from both the strain gradient models. The effect of e(0)a on the ultrasonic wave behavior of the nanorods is also observed. (C) 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Gaussianity of signals/noise often results in significant performance degradation for systems, which are designed using the Gaussian assumption. So non-Gaussian signals/noise require a different modelling and processing approach. In this paper, we discuss a new Bayesian estimation technique for non-Gaussian signals corrupted by colored non Gaussian noise. The method is based on using zero mean finite Gaussian Mixture Models (GMMs) for signal and noise. The estimation is done using an adaptive non-causal nonlinear filtering technique. The method involves deriving an estimator in terms of the GMM parameters, which are in turn estimated using the EM algorithm. The proposed filter is of finite length and offers computational feasibility. The simulations show that the proposed method gives a significant improvement compared to the linear filter for a wide variety of noise conditions, including impulsive noise. We also claim that the estimation of signal using the correlation with past and future samples leads to reduced mean squared error as compared to signal estimation based on past samples only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of distributed space-time coding with reduced decoding complexity for wireless relay network. The transmission protocol follows a two-hop model wherein the source transmits a vector in the first hop and in the second hop the relays transmit a vector, which is a transformation of the received vector by a relay-specific unitary transformation. Design criteria is derived for this system model and codes are proposed that achieve full diversity. For a fixed number of relay nodes, the general system model considered in this paper admits code constructions with lower decoding complexity compared to codes based on some earlier system models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processor architects have a challenging task of evaluating a large design space consisting of several interacting parameters and optimizations. In order to assist architects in making crucial design decisions, we build linear regression models that relate Processor performance to micro-architecture parameters, using simulation based experiments. We obtain good approximate models using an iterative process in which Akaike's information criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We used this procedure to establish the relationship of the CPI performance response to 26 key micro-architectural parameters using a detailed cycle-by-cycle superscalar processor simulator The resulting models provide a significance ordering on all micro-architectural parameters and their interactions, and explain the performance variations of micro-architectural techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Randomly diluted quantum boson and spin models in two dimensions combine the physics of classical percolation with the well-known dimensionality dependence of ordering in quantum lattice models. This combination is rather subtle for models that order in two dimensions but have no true order in one dimension, as the percolation cluster near threshold is a fractal of dimension between 1 and 2: two experimentally relevant examples are the O(2) quantum rotor and the Heisenberg antiferromagnet. We study two analytic descriptions of the O(2) quantum rotor near the percolation threshold. First a spin-wave expansion is shown to predict long-ranged order, but there are statistically rare points on the cluster that violate the standard assumptions of spin-wave theory. A real-space renormalization group (RSRG) approach is then used to understand how these rare points modify ordering of the O(2) rotor. A new class of fixed points of the RSRG equations for disordered one-dimensional bosons is identified and shown to support the existence of long-range order on the percolation backbone in two dimensions. These results are relevant to experiments on bosons in optical lattices and superconducting arrays, and also (qualitatively) for the diluted Heisenberg antiferromagnet La-2(Zn,Mg)(x)Cu1-xO4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massively parallel SIMD computing is applied to obtain an order of magnitude improvement in the executional speed of an important algorithm in VLSI design automation. The physical design of a VLSI circuit involves logic module placement as a subtask. The paper is concerned with accelerating the well known Min-cut placement technique for logic cell placement. The inherent parallelism of the Min-cut algorithm is identified, and it is shown that a parallel machine based on the efficient execution of the placement procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the status of supersymmetric seesaw models in the light of recent experimental results on mu -> e + gamma, theta(13) and the light Higgs mass at the LHC. SO(10)-like relations are assumed for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan beta is still allowed. This remaining region can be ruled out by an order of magnitude improvement in the current limit on BR(mu -> e + gamma). We also explore a model with non-universal Higgs mass boundary conditions at the high scale. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations within the flavor violating terms. Such cancellations might relax the severe constraints imposed by lepton flavor violation compared to mSUGRA. Nevertheless for a large region of parameter space the predicted rates lie within the reach of future experiments once the light Higgs mass constraint is imposed. We also update the potential of the ongoing and future experimental searches for lepton flavor violation in constraining the supersymmetric parameter space.