282 resultados para redox-active disulfide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obtaining correctly folded proteins from inclusion bodies of recombinant proteins expressed in bacterial hosts requires solubilization with denaturants and a refolding step. Aggregation competes with the second step. Refolding of eight different proteins was carried out by precipitation with smart polymers. These proteins have different molecular weights, different number of disulfide bridges and some of these are known to be highly prone to aggregation. A high throughput refolding screen based upon fluorescence emission maximum around 340 nm (for correctly folded proteins) was developed to identify the suitable smart polymer. The proteins could be dissociated and recovered after the refolding step. The refolding could be scaled up and high refolding yields in the range of 8 mg L-1 (for CD4D12, the first two domains of human CD4) to 58 mg L-1 (for malETrx, thioredoxin fused with signal peptide of maltose binding protein) were obtained. Dynamic light scattering (DLS) showed that polymer if chosen correctly acted as a pseuclochaperonin and bound to the proteins. It also showed that the time for maximum binding was about 50 min which coincided with the time required for incubation (with the polymer) before precipitation for maximum recovery of folded proteins. The refolded proteins were characterized by fluorescence emission spectra, circular dichroism (CD) spectroscopy, melting temperature (T-m), and surface hydrophobicity measurement by ANS (8-anilinol-naphthalene sulfonic acid) fluorescence. Biological activity assay for thioredoxin and fluorescence based assay in case of maltose binding protein (MBP) were also carried out to confirm correct refolding. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coenzyme Q (ubiquinone), a fully substituted benzoquinone with polyprenyl side chain, participates in many cellular redox activities. Paradoxically it was discovered only in 1957, albeit being ubiquitous. It required a person, F. L. Crane, a place, Enzyme Institute, Madison, USA, and a time when D. E. Green was directing vigorous research on mitochondria. Located at the transition of 2-electron flavoproteins and 1-electron cytochrome carriers, it facilitates electron transfer through the elegant Q-cycle in mitochondria to reduce O-2 to H2O, and to H2O2, now a significant signal-transducing agent, as a minor activity in shunt pathway (animals) and alternative oxidase (plants). The ability to form Q-radical by losing an electron and a proton was ingeniously used by Mitchell to explain the formation of the proton gradient, considered the core of energy transduction, and also in acidification in vacuoles. Known to be a mobile membrane constituent (microsomes, plasma membrane and Golgi apparatus), allowing it to reach multiple sites, coenzyme Q is expected to have other activities. Coenzyme Q protects circulating lipoproteins being a better lipid antioxidant than even vitamin E. Binding to proteins such as QPS, QPN, QPC and uncoupling protein in mitochondria, QA and QB in the reaction centre in R. sphaeroides, and disulfide bond-forming protein in E. coli (possibly also in Golgi), coenzyme Q acquires selective functions. A characteristic of orally dosed coenzyme Q is its exclusive absorption into the liver, but not the other tissues. This enrichment of Q is accompanied by significant decrease of blood pressure and of serum cholesterol. Inhibition of formation of mevalonate, the common precursor in the branched isoprene pathway, by the minor product, coenzyme Q, decreases the major product, cholesterol. Relaxation of contracted arterial smooth muscle by a side-chain truncated product of coenzyme Q explains its effect of decreasing blood pressure. Extensive clinical studies carried out on oral supplements of coenzyine Q, initially by K. Folkers and Y. Yamamura and followed many others, revealed a large number of beneficial effects, significantly in cardiovascular diseases. Such a variety of effects by this lipid quinone cannot depend on redox activity alone. The fat-soluble vitamins (A, D, E and K) that bear structural relationship with coenzyme Q are known to be active in their polar forms. A vignette of modified forms of coenzyme Q taking active role in its multiple effects is emerging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of mu-conotoxin KIIIA, which was predicted originally to have a C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related mu-conotoxins. The two major isomers of synthetic mu-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(v)1.2 (K-d values of 5 and 230 nM, respectively). The solution structure for mu-KIIIA based on nuclear magnetic resonance data was recalculated with the C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the mu-KIIIA structure calculated with the incorrect C1-C9,C2-C15,C4-C16] disulfide pattern, with an alpha-helix spanning residues 7-12. In addition, the major folding isomers of mu-KIIIB, an N-terminally extended isoform of mu-KIIIA, identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as mu-KIIIA, and both blocked Na(v)1.2 (K-d values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic mu-KIIIA and mu-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of mu-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The host-pathogen interactions in Mycobacterium tuberculosis infection are significantly influenced by redox stimuli and alterations in the levels of secreted antigens. The extracyto-plasmic function (ECF) sigma factor sigma(K) governs the transcription of the serodominant antigens MPT70 and MPT83. The cellular levels of sigma(K) are regulated by the membrane-associated anti-sigma(K) (RskA) that localizes sigma(K) in an inactive complex. The crystal structure of M. tuberculosis sigma(K) in complex with the cytosolic domain of RskA (RskAcyto) revealed a disulfide bridge in the -35 promoter-interaction region of sigma(K). Biochemical experiments reveal that the redox potential of the disulfide-forming cysteines in sigma(K) is consistent with its role as a sensor. The disulfide bond in sigma(K) influences the stability of the sigma(K)-RskA(cyto) complex but does not interfere with sigma(K)-promoter DNA interactions. It is noted that these disulfide-forming cysteines are conserved across homologues, suggesting that this could be a general mechanism for redox-sensitive transcription regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significant contribution of naturally occurring disulfide bonds to protein stability has encouraged development of methods to engineer non-native disulfides in proteins. These have yielded mixed results. We summarize applications of the program MODIP for disulfide engineering. The program predicts sites in proteins where disulfides can be stably introduced. The program has also been used as an aid in conformational analysis of naturally occurring disulfides in a-helices, antiparallel and parallel beta-strands. Disulfides in a-helices occur only at N-termini, where the first cysteine residue is the N-cap residue of the helix. The disulfide occurs as a CXXC motif and can possess redox activity. In antiparallel beta-strands, disulfides occur exclusively at non-hydrogen bonded (NHB) registered pairs of antiparallel beta-sheets with only 1 known natural example occurring at a hydrogen bonded (HB) registered pair. Conformational analysis suggests that disulfides between HB residue pairs are under torsional strain. A similar analysis to characterize disulfides in parallel beta-strands was carried out. We observed that only 9 instances of cross-strand disulfides exist in a non-redundant dataset. Stereochemical analysis shows that while tbe chi(square) angles are similar to those of other disulfides, the chi(1) and chi(2) angles show more variation and that one of tbe strands is generally an edge strand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soluble lead acid redox flow battery (SLRFB) offers a number of advantages. These advantages can be harnessed after problems associated with buildup of active material on. electrodes (residue) are resolved. A mathematical model is developed to understand residue formation in SLRFB. The model incorporates fluid flow, ion transport, electrode reactions, and non-uniform current distribution on electrode surfaces. A number of limiting cases are studied to conclude that ion transport and electrode reaction on anode simultaneously control battery performance. The model fits the reported cell voltage vs. time profiles very well. During the discharge cycle, the model predicts complete dissolution of deposited material from trailing edge side of the electrodes. With time, the active surface area of electrodes decreases rapidly. The corresponding increase in current density leads to precipitous decrease in cell potential before all the deposited material is dissolved. The successive charge-discharge cycles add to the residue. The model correctly captures the marginal effect of flow rate on cell voltage profiles, and identifies flow rate and flow direction as new variables for controlling residue buildup. Simulations carried out with alternating flow direction and a SLRFB with cylindrical electrodes show improved performance with respect to energy efficiency and residue buildup. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (E-GSH; Grx1-roGFP2) and measured subcellular changes in E-GSH during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial E-GSH (approximately -310 mV), active viral replication induces substantial oxidative stress (E-GSH more than -240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular E-GSH between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about similar to 25 mV in E-GSH is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular E-GSH. Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method for the preparation of novel disulfide-tethered macrocyclic diacylglycerols (DAGs) has been described. Overall synthesis involved stepwise protection, acylation, and deprotection to yield the bis(omega-bromoacyl) glycerols. In the crucial macrocyclization step, a unique reagent, benzyltriethylammonium tetrathiomolybdate (BTAT), has been used to convert individual bis(omega-bromoacyl) glycerols to their respective macrocyclic disulfides. DAG 6, which had ether linkages between hydrocarbon chains and the glycerol backbone, was also synthesized from an appropriate precursor using a similar protocol. One of the DAGs (DAG 5) had a carbon-carbon tether instead of a disulfide one and was synthesized using modified Glaser coupling. Preparation of alpha-disulfide-tethered DAG (DAG 4) required an alternative method, as treatment of the bisbromo precursor with BTAT gave a mixture of several compounds from which separation of the target molecule was cumbersome. To avoid this problem, the bisbromide was converted to its corresponding dithiocyanate, which on further treatment with BTAT yielded the desired DAG (DAG 4) in good yield. Upon treatment with the reducing agent dithiothreitol (DTT), the DAGs that contain a disulfide tether could be quantitatively converted to their "open-chain" thiol analogues. These macrocyclic DAGs and their reduced "open-chain" analogues have been incorporated in DPPC vesicles to study their effect on model membranes. Upon incorporation of DAG 1 in DPPC vesicles, formation of new isotropic phases was observed by P-31 NMR, These isotropic phases disappeared completely on opening the macrocyclic ring by a reducing agent. The thermotropic properties of DPPC bilayers having DAGs (1-6) incorporated at various concentrations were studied by differential scanning calorimetry. Incorporation of DAGs in general reduced the cooperativity unit (CU) of the vesicles. Similar experiments with reduced "open-chain" DAGs incorporated in a DPPC bilayer indicated a recovery of CU with respect to their macrocyclic "disulfide" counterparts. The effect of inclusion of these DAGs on the activity of phospholipase A(2) (PLA(2)) was studied in vitro. Incorporation of DAC 1 in DPPC membranes potentiated both bee venom and cobra venom PLA(2) activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG), a heterodimeric glycoprotein hormone, is composed of an alpha subunit noncovalentlv associated with the hormone-specific beta subunit. The objective of the present study was recombinant expression of properly folded, biologically active hCG and its subunits using an expression system that could be used for structure-function studies while providing adequate quantities of the hormone for immunocontraceptive studies. We report here expression of biologically active hCG and its subunits using a yeast expression system, Pichia pastoris. The recombinant hGG alpha and hCG beta subunits were secreted into the medium and the levels of expression achieved at shake culture level were 24 and 2.7-3 mg/l secretory medium respectively. Go-expression of both subunits in the same cell resulted in secretion of heterodimeric hGG into the medium. The pichia-expressed hCG was immunologically similar to the native hormone, capable of binding to the LH receptors and stimulating a biological response in vitro. Surprisingly, the maximal response obtained was twice that obtained with the native hGG. The le level of expression of hCG achieved was 12-16 mg/l secretory medium and is expected to increase several-fold in a fermenter. Thus the Pichia expression system is capable of hyperexpressing properly folded, biologically active hGG and is suitable for structure-function studies of the hormone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New diacylglycerols (2-4) containing intramolecular disulfide linkages between pendant acyl chains were synthesized. Due to the differences in the location of disulfide units, the present method allows synthesis of macrocycles that vary in sizes. Copyright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescence has been detected in cyclic tetrapeptide disulfides containing only nonaromatic residues. Excitation of the S-S- n-cr transition between 280 and 290 nm leads to.ernission in the region 300-340 nm. The position and intensity of the emission band depends on the stereochemistry of the peptide and polarity of the solvent. Quantum yields ranging from 0.002 to 0.026 have been determined. Disulfide luminescence is quenched by oxygen and enhanced in solutions saturated with nitrogen. Contributions from disulfide linkages should be considered, when analysing the emission spectra of proteins, lacking tryptophan but having a high cystine content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The (+)-enantiomer of the polyphenolic binaphthyl gossypol, has been shown to be a useful CD probe of interactions with human and bovine serum albumin. (+)-Gossypol binds to albumin with same affinity as recemic (±)-gossypol, as shown by fluorescence quenching, and also displaces bilirubin from its albumin binding site. The CD characteristics of bound gossypol are different in the case of the two proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.