42 resultados para program verification
Resumo:
Knowledge about program worst case execution time (WCET) is essential in validating real-time systems and helps in effective scheduling. One popular approach used in industry is to measure execution time of program components on the target architecture and combine them using static analysis of the program. Measurements need to be taken in the least intrusive way in order to avoid affecting accuracy of estimated WCET. Several programs exhibit phase behavior, wherein program dynamic execution is observed to be composed of phases. Each phase being distinct from the other, exhibits homogeneous behavior with respect to cycles per instruction (CPI), data cache misses etc. In this paper, we show that phase behavior has important implications on timing analysis. We make use of the homogeneity of a phase to reduce instrumentation overhead at the same time ensuring that accuracy of WCET is not largely affected. We propose a model for estimating WCET using static worst case instruction counts of individual phases and a function of measured average CPI. We describe a WCET analyzer built on this model which targets two different architectures. The WCET analyzer is observed to give safe estimates for most benchmarks considered in this paper. The tightness of the WCET estimates are observed to be improved for most benchmarks compared to Chronos, a well known static WCET analyzer.
Resumo:
Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. SuSeFLAV is a numerical tool capable of computing supersymmetric spectra precisely for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete 3 x 3 flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as l(j) -> l(i)gamma, l(j) -> 3 l(i), b -> s gamma and supersymmetric contributions to flavor conserving quantities such as (g(mu) - 2). A large choice of executables suitable for various operations of the program are provided. Program summary Program title: SuSeFLAV Catalogue identifier: AEOD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 76552 No. of bytes in distributed program, including test data, etc.: 582787 Distribution format: tar.gz Programming language: Fortran 95. Computer: Personal Computer, Work-Station. Operating system: Linux, Unix. Classification: 11.6. Nature of problem: Determination of masses and mixing of supersymmetric particles within the context of MSSM with conserved R-parity with and without the presence of Type-I seesaw. Inter-generational mixing is considered while calculating the mass spectrum. Supersymmetry breaking parameters are taken as inputs at a high scale specified by the mechanism of supersymmetry breaking. RG equations including full inter-generational mixing are then used to evolve these parameters up to the electroweak breaking scale. The low energy supersymmetric spectrum is calculated at the scale where successful radiative electroweak symmetry breaking occurs. At weak scale standard model fermion masses, gauge couplings are determined including the supersymmetric radiative corrections. Once the spectrum is computed, the program proceeds to various lepton flavor violating observables (e.g., BR(mu -> e gamma), BR(tau -> mu gamma) etc.) at the weak scale. Solution method: Two loop RGEs with full 3 x 3 flavor mixing for all supersymmetry breaking parameters are used to compute the low energy supersymmetric mass spectrum. An adaptive step size Runge-Kutta method is used to solve the RGEs numerically between the high scale and the electroweak breaking scale. Iterative procedure is employed to get the consistent radiative electroweak symmetry breaking condition. The masses of the supersymmetric particles are computed at 1-loop order. The third generation SM particles and the gauge couplings are evaluated at the 1-loop order including supersymmetric corrections. A further iteration of the full program is employed such that the SM masses and couplings are consistent with the supersymmetric particle spectrum. Additional comments: Several executables are presented for the user. Running time: 0.2 s on a Intel(R) Core(TM) i5 CPU 650 with 3.20 GHz. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.
Resumo:
We provide experimental evidence supporting the vectorial theory for determining electric field at and near the geometrical focus of a cylindrical lens. This theory provides precise distribution of field and its polarization effects. Experimental results show a close match (approximate to 95% using (2)-test) with the simulation results (obtained using vectorial theory). Light-sheet generated both at low and high NA cylindrical lens shows the importance of vectorial theory for further development of light-sheet techniques. Potential applications are in planar imaging systems (such as, SPIM, IML-SPIM, imaging cytometry) and spectroscopy. Microsc. Res. Tech. 77:105-109, 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm. (C) 2014 Author(s).
Resumo:
Identification and analysis of nonbonded interactions within a molecule and with the surrounding molecules are an essential part of structural studies, given the importance of these interactions in defining the structure and function of any supramolecular entity. MolBridge is an easy to use algorithm based purely on geometric criteria that can identify all possible nonbonded interactions, such as hydrogen bond, halogen bond, cation-pi, pi-pi and van der Waals, in small molecules as well as biomolecules. The user can either upload three-dimensional coordinate files or enter the molecular ID corresponding to the relevant database. The program is available in a standalone form and as an interactive web server with Jmol and JME incorporated into it. The program is freely downloadable and the web server version is also available at http://nucleix.mbu.iisc.ernet.in/molbridge/index.php.
Resumo:
We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E similar to 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Cache analysis plays a very important role in obtaining precise Worst Case Execution Time (WCET) estimates of programs for real-time systems. While Abstract Interpretation based approaches are almost universally used for cache analysis, they fail to take advantage of its unique requirement: it is not necessary to find the guaranteed cache behavior that holds across all executions of a program. We only need the cache behavior along one particular program path, which is the path with the maximum execution time. In this work, we introduce the concept of cache miss paths, which allows us to use the worst-case path information to improve the precision of AI-based cache analysis. We use Abstract Interpretation to determine the cache miss paths, and then integrate them in the IPET formulation. An added advantage is that this further allows us to use infeasible path information for cache analysis. Experimentally, our approach gives more precise WCETs as compared to AI-based cache analysis, and we also provide techniques to trade-off analysis time with precision to provide scalability.
SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae
Resumo:
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1. cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1. sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
We propose apractical, feature-level and score-level fusion approach by combining acoustic and estimated articulatory information for both text independent and text dependent speaker verification. From a practical point of view, we study how to improve speaker verification performance by combining dynamic articulatory information with the conventional acoustic features. On text independent speaker verification, we find that concatenating articulatory features obtained from measured speech production data with conventional Mel-frequency cepstral coefficients (MFCCs) improves the performance dramatically. However, since directly measuring articulatory data is not feasible in many real world applications, we also experiment with estimated articulatory features obtained through acoustic-to-articulatory inversion. We explore both feature level and score level fusion methods and find that the overall system performance is significantly enhanced even with estimated articulatory features. Such a performance boost could be due to the inter-speaker variation information embedded in the estimated articulatory features. Since the dynamics of articulation contain important information, we included inverted articulatory trajectories in text dependent speaker verification. We demonstrate that the articulatory constraints introduced by inverted articulatory features help to reject wrong password trials and improve the performance after score level fusion. We evaluate the proposed methods on the X-ray Microbeam database and the RSR 2015 database, respectively, for the aforementioned two tasks. Experimental results show that we achieve more than 15% relative equal error rate reduction for both speaker verification tasks. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Fingerprints are used for identification in forensics and are classified into Manual and Automatic. Automatic fingerprint identification system is classified into Latent and Exemplar. A novel Exemplar technique of Fingerprint Image Verification using Dictionary Learning (FIVDL) is proposed to improve the performance of low quality fingerprints, where Dictionary learning method reduces the time complexity by using block processing instead of pixel processing. The dynamic range of an image is adjusted by using Successive Mean Quantization Transform (SMQT) technique and the frequency domain noise is reduced using spectral frequency Histogram Equalization. Then, an adaptive nonlinear dynamic range adjustment technique is utilized to determine the local spectral features on corresponding fingerprint ridge frequency and orientation. The dictionary is constructed using spatial fundamental frequency that is determined from the spectral features. These dictionaries help in removing the spurious noise present in fingerprints and reduce the time complexity by using block processing instead of pixel processing. Further, dictionaries are used to reconstruct the image for matching. The proposed FIVDL is verified on FVC database sets and Experimental result shows an improvement over the state-of-the-art techniques. (C) 2015 The Authors. Published by Elsevier B.V.