38 resultados para passage rite
Resumo:
Bacterial DNA topoisomerase I (topoI) catalyzes relaxation of negatively supercoiled DNA. The enzyme alters DNA topology through protein-operated DNA gate, switching between open and closed conformations during its reaction. We describe the mechanism of inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis topoI by monoclonal antibodies (mAbs) that bind with high affinity and inhibit at 10-50 nM concentration. Unlike other inhibitors of topoisomerases, the mAbs inhibited several steps of relaxation reaction, namely DNA binding, cleavage, strand passage, and enzyme-DNA dissociation. The enhanced religation of the cleaved DNA in presence of the mAb indicated closing of the enzyme DNA gate. The formation of enzyme-DNA heterocatenane in the presence of the mAbs as a result of closing the gate could be inferred by the salt resistance of the complex, visualized by atomic force microscopy and confirmed by fluorescence measurements. Locking the enzyme-DNA complex as a closed clamp restricted the movements of the DNA gate, affecting all of the major steps of the relaxation reaction. Enzyme trapped on DNA in closed clamp conformation formed roadblock for the elongating DNA polymerase. The unusual multistep inhibition of mycobacterial topoisomerases may facilitate lead molecule development, and the mAbs would also serve as valuable tools to probe the enzyme mechanism.
Resumo:
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
Resumo:
GX 301-2, a bright high-mass X-ray binary with an orbital period of 41.5 d, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disc, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecedented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates the presence of high density absorbing matter behind the neutron star in this orbital phase range. A low energy excess is also found in the spectrum at orbital phases around the pre-periastron X-ray flare. The orbital dependence of these parameters are then used to examine the various models about mode of accretion on to the neutron star in GX 301-2.
Resumo:
Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.
Resumo:
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.
Resumo:
Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.
Resumo:
Diffusion-a measure of dynamics, and entropy-a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values. (C) 2015 AIP Publishing LLC.
Resumo:
The problem of continuous curvature path planning for passages is considered. This problem arises when an autonomous vehicle traverses between prescribed boundaries such as corridors, tunnels, channels, etc. Passage boundaries with curvature and heading discontinuities pose challenges for generating smooth paths passing through them. Continuous curvature half-S shaped paths derived from the Four Parameter Logistic Curve family are proposed as a prospective path planning solution. Analytic conditions are derived for generating continuous curvature paths confined within the passage boundaries. Zero end curvature highlights the scalability of the proposed solution and its compatibility with other path planners in terms of larger path planning domains. Various scenarios with curvature and heading discontinuities are considered presenting viability of the proposed solution.