42 resultados para parasitic disease


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Nanotubes (CNTs) grown on substrates are potential electron sources in field emission applications. Several studies have reported the use of CNTs in field emission devices, including field emission displays, X-ray tube, electron microscopes, cathode-ray lamps, etc. Also, in recent years, conventional cold field emission cathodes have been realized in micro-fabricated arrays for medical X-ray imaging. CNTbased field emission cathode devices have potential applications in a variety of industrial and medical applications, including cancer treatment. Field emission performance of a single isolated CNT is found to be remarkable, but the situation becomes complex when an array of CNTs is used. At the same time, use of arrays of CNTs is practical and economical. Indeed, such arrays on cathode substrates can be grown easily and their collective dynamics can be utilized in a statistical sense such that the average emission intensity is high enough and the collective dynamics lead to longer emission life. The authors in their previous publications had proposed a novel approach to obtain stabilized field emission current from a stacked CNT array of pointed height distribution. A mesoscopic modeling technique was employed, which took into account electro-mechanical forces in the CNTs, as well as transport of conduction electron coupled with electron phonon induced heat generation from the CNT tips. The reported analysis of pointed arrangements of the array showed that the current density distribution was greatly localized in the middle of the array, the scatter due to electrodynamic force field was minimized, and the temperature transients were much smaller compared to those in an array with random height distribution. In the present paper we develop a method to compute the emission efficiency of the CNT array in terms of the amount of electrons hitting the anode surface using trajectory calculations. Effects of secondary electron emission and parasitic capacitive nonlinearity on the current-voltage signals are accounted. Field emission efficiency of a stacked CNT array with various pointed height distributions are compared to that of arrays with random and uniform height distributions. Effect of this parasitic nonlinearity on the emission switch-on voltage is estimated by model based simulation and Monte Carlo method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Genetic variants of NOD2 are linked to inflammatory bowel disease (IBD) etiology. Results: DSS model of colitis in wild-type and inducible nitric-oxide synthase (iNOS) null mice revealed that NOD2-iNOS/NO-responsive microRNA-146a targets NUMB gene facilitating Sonic hedgehog (SHH) signaling. Conclusion: miR-146a-mediated NOD2-SHH signaling regulates gut inflammation. Significance: Identification of novel regulators of IBD provides new insights into pathophysiology and development of new therapy concepts. Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential occupancy of space can lead to species coexistence. The fig-fig wasp pollination system hosts species-specific pollinating and parasitic wasps that develop within galls in a nursery comprising a closed inflorescence, the syconium. This microcosm affords excellent opportunities for investigating spatial partitioning since it harbours a closed community in which all wasp species are dependent on securing safe sites inside the syconium for their developing offspring while differing in life history, egg deposition strategies and oviposition times relative to nursery development. We determined ontogenetic changes in oviposition sites available to the seven-member fig wasp community of Ficus racemosa comprising pollinators, gallers and parasitoids. We used species distribution models (SDMs) for the first time at a microcosm scale to predict patterns of spatial occurrence of nursery occupants. SDMs gave high true-positive and low false-positive site occupancy rates for most occupants indicating species specificity in oviposition sites. The nursery microcosm itself changed with syconium development and sequential egg-laying by different wasp species. The number of sites occupied by offspring of the different wasp species was negatively related to the risk of syconium abortion by the plant host following oviposition. Since unpollinated syconia are usually aborted, parasitic wasps ovipositing into nurseries at the same time as the pollinator targeted many sites, suggesting response to lower risk of syconium abortion owing to reduced risk of pollination failure compared to those species ovipositing before pollination. Wasp life history and oviposition time relative to nursery development contributed to the co-existence of nursery occupants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Leukocyte Antigen (HLA) plays an important role, in presenting foreign pathogens to our immune system, there by eliciting early immune responses. HLA genes are highly polymorphic, giving rise to diverse antigen presentation capability. An important factor contributing to enormous variations in individual responses to diseases is differences in their HLA profiles. The heterogeneity in allele specific disease responses decides the overall disease epidemiological outcome. Here we propose an agent based computational framework, capable of incorporating allele specific information, to analyze disease epidemiology. This framework assumes a SIR model to estimate average disease transmission and recovery rate. Using epitope prediction tool, it performs sequence based epitope detection for a given the pathogenic genome and derives an allele specific disease susceptibility index depending on the epitope detection efficiency. The allele specific disease transmission rate, that follows, is then fed to the agent based epidemiology model, to analyze the disease outcome. The methodology presented here has a potential use in understanding how a disease spreads and effective measures to control the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Field Programmable Gate Array (FPGA) based hardware accelerator for multi-conductor parasitic capacitance extraction, using Method of Moments (MoM), is presented in this paper. Due to the prohibitive cost of solving a dense algebraic system formed by MoM, linear complexity fast solver algorithms have been developed in the past to expedite the matrix-vector product computation in a Krylov sub-space based iterative solver framework. However, as the number of conductors in a system increases leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products present a time bottleneck, especially for ill-conditioned system matrices. In this work, an FPGA based hardware implementation is proposed to parallelize the iterative matrix solution for multiple RHS vectors in a low-rank compression based fast solver scheme. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple conductors in a Ball Grid Array (BGA) package. Speed-ups up to 13x over equivalent software implementation on an Intel Core i5 processor for dense matrix-vector products and 12x for QR compressed matrix-vector products is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ser/Thr and Tyr protein kinases orchestrate many signalling pathways and hence loss in this balance leads to many disease phenotypes. Due to their high abundance, diversity and importance, efforts have been made in the past to classify kinases and annotate their functions at both gross and fine levels. These kinases are conventionally classified into subfamilies based on the sequences of catalytic domains. Usually the domain architecture of a full-length kinase is consistent with the subfamily classification made based on the sequence of kinase domain. Important contributions of modular domains to the overall function of the kinase are well known. Recently occurrence of two kinds of outlier kinases-''Hybrid'' and ``Rogue'' has been reported. These show considerable deviations in their domain architectures from the typical domain architecture known for the classical kinase subfamilies. This article provides an overview of the different subfamilies of human kinases and the role of non-kinase domains in functions and diseases. Importantly this article provides analysis of hybrid and rogue kinases encoded in the human genome and highlights their conservation in closely related primate species. These kinases are examples of elegant rewiring to bring about subtle functional differences compared to canonical variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecoepidemiology is a well-developed branch of theoretical ecology, which explores interplay between the trophic interactions and the disease spread. In most ecoepidemiological models, however, the authors assume the predator to be a specialist, which consumes only a single prey species. In few existing papers, in which the predator was suggested to be a generalist, the alternative food supply was always considered to be constant. This is obviously a simplification of reality, since predators can often choose between a number of different prey. Consumption of these alternative prey can dramatically change their densities and strongly influence the model predictions. In this paper, we try to bridge the gap and explore a generic ecoepidemiological system with a generalist predator, where the densities of all prey are dynamical variables. The model consists of two prey species, one of which is subject to an infectious disease, and a predator, which consumes both prey species. We investigate two main scenarios of infection transmission mode: (i) the disease transmission rate is predator independent and (ii) the transmission rate is a function of predator density. For both scenarios we fulfil an extensive bifurcation analysis. We show that including a second dynamical prey in the system can drastically change the dynamics of the single prey case. In particular, the presence of a second prey impedes disease spread by decreasing the basic reproduction number and can result in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption of the second prey species by the predator, the predator-dependent disease transmission can not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the population of the second prey eventually vanishes and only one prey species finally remains, the system with two prey species may exhibit different properties to those of the single prey system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. Biological significance: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock -in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock -in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene exptessions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh-Qm (Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a Field Programmable Gate Array (FPGA)-based hardware accelerator for 3D electromagnetic extraction, using Method of Moments (MoM) is presented. As the number of nets or ports in a system increases, leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products presents a time bottleneck in a linear-complexity fast solver framework. In this work, an FPGA-based hardware implementation is proposed toward a two-level parallelization scheme: (i) matrix level parallelization for single RHS and (ii) pipelining for multiple-RHS. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple nets in a Ball Grid Array (BGA) package. The acceleration is shown to be linearly scalable with FPGA resources and speed-ups over 10x against equivalent software implementation on a 2.4GHz Intel Core i5 processor is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board with the implemented design operating at 200MHz clock frequency. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:776-783, 2016