153 resultados para optical materials


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optical-phonon-limited velocity model has been employed to investigate high-field transport in a selection of layered 2-D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors. Drain currents, effective electron velocities, and intrinsic cutoff frequencies as a function of carrier density have been predicted, thus providing a benchmark for the optical-phonon-limited high-field performance limits of these materials. The optical-phonon-limited carrier velocities for a selection of multi-layers of transition metal dichalcogenides and black phosphorus are found to be modest compared to their n-channel silicon counterparts, questioning the utility of biasing these devices in the source-injection dominated regime. h-BN, at the other end of the spectrum, is shown to be a very promising material for high-frequency, high-power devices, subject to the experimental realization of high carrier densities, primarily due to its large optical-phonon energy. Experimentally extracted saturation velocities from few-layer MoS2 devices show reasonable qualitative and quantitative agreement with the predicted values. The temperature dependence of the measured v(sat) is discussed and compared with the theoretically predicted dependence over a range of temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K(2)O-Li2O-2.5Nb(2)O(5)) (2 <= x <= 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T-g). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These arc very low-density porous materials showing fibrillar networks oil which fluorinated gold NPs arc dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstaract is not available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200-600 degrees C temperature range, its cubic phase of 2-3 nm size. prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 degrees C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction. transmission electron microscopy, and UV-visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 degrees C annealed samples, under ultraviolet light excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of the chemical shifts ΔE of the K-absorption edge in both crystalline and amorphous states of several solids shows that ΔE is generally smaller in the amorphous state. More covalent solids appear to be associated with small values of ΔE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically clear glasses were fabricated by quenching the melt of CaCO3-Bi2O3-B2O3 (in equimolecular ratio). The amorphous and glassy characteristics of the as-quenched samples were confirmed via the X-ray powder diffraction (XRD) and differential scanning calorimetric (DSC) studies These glasses were found to. have high thermal stability parameter (S). The optical transmission studies carried out in the 200-2500 nm wavelength range confirmed both the as-quenched and heat-treated samples to be transparent between 400 nm and 2500 nm. The glass-plates that were heat-treated just above the glass transition temperature (723 K) for 6 h retained approximate to 60% transparency despite having nano-crystallites (approximate to 50-100 nm) of CaBi2B2O7 (CBBO) as confirmed by both the XRD and transmission electron microscopy (TEM) studies. The dielectric properties and impedance characteristics of the as-quenched and heat-treated (723 K/6 h) samples were studied as a function of frequency at different temperatures. Cole-Cole equation was employed to rationalize the impedance data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new donor-acceptor type liquid crystalline semiconductors based on benzothiazole have been synthesized. Their structural, photophysical and electronic properties were investigated using X-ray diffraction, atomic force microscopy, cyclic voltammetry, UV-Vis, photoluminescence, and Raman spectroscopy. The liquid crystalline behaviour of the molecules was thoroughly examined by differential scanning calorimetry (DSC) and optical polarizing microscope. The DSC and thermogravimetric analysis (TGA) show that these materials posses excellent thermal stability and have decomposition temperatures in excess of 300 degrees C. Beyond 160 degrees C both molecules show a smectic A liquid crystalline phase that exists till about 240 degrees C. Field-effect transistors were fabricated by vacuum evaporating the semiconductor layer using standard bottom gate/top contact geometry. The devices exhibit p-channel behaviour with hole mobilities of 10(-2) cm(2)/Vs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.