42 resultados para nonpoint-source pollution control
Resumo:
In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.
Resumo:
In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.
Resumo:
This paper describes the simulation of a control scheme using the principle of field orientation for the control of a voltage source inverter-fed induction motor. The control principle is explained, followed by an algorithm to simulate various components of the system in the digital computer. The dynamic response of the system for the load disturbance and set-point variations have been studied. Also, the results of the simulation showing the behavior of field coordinates for such disturbances are given.
Resumo:
This paper describes the method of field orientation of the stator current vector with respect to the stator, mutual, and rotor flux vectors, for the control of an induction motor fed from a current source inverter (CSI). A control scheme using this principle is described for orienting the stator current with respect to the rotor flux, as this gives natural decoupling between the current coordinates. A dedicated micro-computer system developed for implementing this scheme has been described. The experimental results are also presented.
Resumo:
Power semiconductor devices have finite turn on and turn off delays that may not be perfectly matched. In a leg of a voltage source converter, the simultaneous turn on of one device and the turn off of the complementary device will cause a DC bus shoot through, if the turn off delay is larger than the turn on delay time. To avoid this situation it is common practice to blank the two complementary devices in a leg for a small duration of time while switching, which is called dead time. This paper proposes a logic circuit for digital implementation required to control the complementary devices of a leg independently and at the same time preventing cross conduction of devices in a leg, and while providing accurate and stable dead time. This implementation is based on the concept of finite state machines. This circuit can also block improper PWM pulses to semiconductor switches and filters small pulses notches below a threshold time width as the narrow pulses do not provide any significant contribution to average pole voltage, but leads to increased switching loss. This proposed dead time logic has been implemented in a CPLD and is implemented in a protection and delay card for 3- power converters.
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.
Resumo:
A current-error space-vector-based hysteresis current controller for a general n-level voltage-source inverter (VSI)-fed three-phase induction motor (IM) drive is proposed here, with control of the switching frequency variation for the full linear modulation range. The proposed current controller monitors the space-vector-based current error of an n-level VSI-fed IM to keep the current error within a parabolic boundary, using the information of the current triangular sector in which the tip of the reference vector lies. Information of the reference voltage vector is estimated using the measured current-error space vectors, along the alpha- and beta-axes. Appropriate dimension and orientation of this parabolic boundary ensure a switching frequency spectrum similar to that of a constant-switching-frequency voltage-controlled space vector pulsewidth modulation (PWM) (SVPWM)-based IM drive. Like SVPWM for multilevel inverters, the proposed controller selects inverter switching vectors, forming a triangular sector in which the tip of the reference vector stays, for the hysteresis PWM control. The sector in the n-level inverter space vector diagram, in which the tip of the fundamental stator voltage stays, is precisely detected, using the sampled reference space vector estimated from the instantaneous current-error space vectors. The proposed controller retains all the advantages of a conventional hysteresis controller such as fast current control, with smooth transition to the overmodulation region. The proposed controller is implemented on a five-level VSI-fed 7.5-kW IM drive.
Resumo:
Accidental spills and improper disposal of industrial effluent/sludge containing heavy metals onto the open land or into subsurface result in soil and water contamination. Detailed investigations are carried out to identify the source of contamination of heavy metals in an industrial suburb near Bangalore in India. Detailed investigation of ground water and subsurface soil analysis for various heavy metals has been carried out. Ground water samples were collected in the entire area through the cluster of borewells. Subsurface soil samples were collected from near borewells which were found to contain heavy metals. Water samples and soils samples (after acid digestion) were analysed as per APHO-standard method of analysis. While the results of Zn, Ni and Cd showed that they are within allowable limits in the soil, the ground water and soils in the site have concentration of Cr+6 far exceeding the allowable limits (up to 832 mg/kg). Considering the topography of the area, ground water movement and results of chromium concentration in the borewells and subsurface it was possible to identify the origin, zone of contamination and the migration path of Cr+6. The results indicated that the predominant mechanism of migration of Cr+6 is by diffusion.
Resumo:
A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.
Resumo:
This paper addresses the problem of localizing the sources of contaminants spread in the environment, and mapping the boundary of the affected region using an innovative swarm intelligence based technique. Unlike most work in this area the algorithm is capable of localizing multiple sources simultaneously while also mapping the boundary of the contaminant spread. At the same time the algorithm is suitable for implementation using a mobile robotic sensor network. Two types of agents, called the source localization agents (or S-agents) and boundary mapping agents (or B-agents) are used for this purpose. The paper uses the basic glowworm swarm optimization (GSO) algorithm, which has been used only for multiple signal source localization, and modifies it considerably to make it suitable for both these tasks. This requires the definition of new behaviour patterns for the agents based on their terminal performance as well as interactions between them that helps the swarm to split into subgroups easily and identify contaminant sources as well as spread along the boundary to map its full length. Simulations results are given to demonstrate the efficacy of the algorithm.
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
India's energy demand is increasing rapidly with the intensive growth of economy. The electricity demand in India exceeded the availability, both in terms of base load energy and peak availability. The efficient use of energy source and its conversion and utilizations are the viable alternatives available to the utilities or industry. There are essentially two approaches to electrical energy management. First at the supply / utility end (Supply Side Management or SSM) and the other at the consumer end (Demand Side Management or DSM). This work is based on Supply Side Management (SSM) protocol and consists of design, fabrication and testing of a control device that will be able to automatically regulate the power flow to an individual consumer's premise. This control device can monitor the overuse of electricity (above the connected load or contracted demand) by the individual consumers. The present project work specially emphasizes on contract demand of every consumer and tries to reduce the use beyond the contract demand. This control unit design includes both software and hardware work and designed for 0.5 kW contract demand. The device is tested in laboratory and reveals its potential use in the field.