379 resultados para nonlinear parameter
Resumo:
We develop a new theoretical formulation to study ion conductance in electrolyte solutions, based on a mode coupling theory treatment of the electrolyte friction. The new theory provides expressions for both the ion atmosphere relaxation and electrophoretic contributions to the total electrolyte friction that acts on a moving ion. While the ion atmosphere relaxation term arises from the time-dependent microscopic interaction of the moving ion with the surrounding ions in the solution, the electrophoretic term originates from the coupling of the ion's velocity to the collective current mode of the ion atmosphere. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to self-consistent expressions for these two terms which also include the effects of self-motion of the ion under consideration. These expressions have been solved for the concentration dependence of electrolyte friction and ion conductance. It is shown that in the limit of very low ion concentration, the present theory correctly reduces to the well-known Debye-Huckel-Onsager limiting law which predicts a linear dependence of conductance on the square root of ion concentration (c). At moderate and high concentrations, the present theory predicts a significant nonlinear and weaker dependence on root c which is in very good agreement with experimental results. The present theory is self-contained and does not involve any adjustable parameter.
Resumo:
This work deals with the formulation and implementation of an energy-momentum conserving algorithm for conducting the nonlinear transient analysis of structures, within the framework of stress-based hybrid elements. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements within the static framework. We show that this advantage carries over to the transient case, so that not only are the solutions obtained more accurate, but they are obtained in fewer iterations. We demonstrate the efficacy of the algorithm on a wide range of problems such as ones involving dynamic buckling, complicated three-dimensional motions, et cetera.
Resumo:
Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.
Resumo:
The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
C 19Ha4N203.~xH 2 O, Mr= 347.5, monoclinic, C2, a = 15.473 (3), b = 6.963 (2), c = 20.708 (4) ]1, //=108.2(2) ° , V=2119(2)A 3, Z=4, Ox= 1.089 Mg m -3, ,~(Cu Ktx) = 1.5418 ]1, p = 0.523 mm -~, F(000) = 760.0, T= 293 K, R = 0.068 for 1967 unique reflections. The C=C bond length is 1-447 (6)]1, significantly longer than in ethylene, 1.336 (2)]1. The crystal structure is stabilized by O-H...O hydrogen bonding. Explanation for the observed low second-harmonic-generation efficiency (0.5 times that of urea) is provided.
Resumo:
It is maintained that the one-parameter scaling theory is inconsistent with the physics of Anderson localisation.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
The anharmonic oscillator under combined sinusoidal and white noise excitation is studied using the Gaussian closure approximation. The mean response and the steady-state variance of the system is obtained by the WKBJ approximation and also by the Fokker Planck equation. The multiple steadystate solutions are obtained and their stability analysis is presented. Numerical results are obtained for a particular set of system parameters. The theoretical results are compared with a digital simulation study to bring out the usefulness of the present approximate theory.
Resumo:
Control systems arising in many engineering fields are often of distributed parameter type, which are modeled by partial differential equations. Decades of research have lead to a great deal of literature on distributed parameter systems scattered in a wide spectrum.Extensions of popular finite-dimensional techniques to infinite-dimensional systems as well as innovative infinite-dimensional specific control design approaches have been proposed. A comprehensive account of all the developments would probably require several volumes and is perhaps a very difficult task. In this paper, however, an attempt has been made to give a brief yet reasonably representative account of many of these developments in a chronological order. To make it accessible to a wide audience, mathematical descriptions have been completely avoided with the assumption that an interested reader can always find the mathematical details in the relevant references.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.