41 resultados para neutrino mass and mixing
Resumo:
A numerical micro-scale model is developed to study the behavior of dendrite growth in presence of melt convection. In this method, an explicit, coupled enthalpy model is used to simulate the growth of an equiaxed dendrite, while a Volume of Fluid (VOF) method is used to track the movement of the dendrite in the convecting melt in a two-dimensional Eulerian framework. Numerical results demonstrate the effectiveness of the enthalpy model in simulating the dendritic growth involving complex shape, and the accuracy of VOF method in conserving mass and preserving the complex dendritic shape during motion. Simulations are performed in presence of uniform melt flow for both fixed and moving dendrites, and the difference in dendrite morphology is shown.
Resumo:
Lepton mass hierarchies and lepton flavour violation are revisited in the framework of Randall-Sundrum models. Models with Dirac-type as well as Majorana-type neutrinos are considered. The five-dimensional c-parameters are fit to the charged lepton and neutrino masses and mixings using chi(2) minimization. Leptonic flavour violation is shown to be large in these cases. Schemes of minimal flavour violation are considered for the cases of an effective LLHH operator and Dirac neutrinos and are shown to significantly reduce the limits from lepton flavour violation.
Resumo:
The governing differential equation of a rotating beam becomes the stiff-string equation if we assume uniform tension. We find the tension in the stiff string which yields the same frequency as a rotating cantilever beam with a prescribed rotating speed and identical uniform mass and stiffness. This tension varies for different modes and are found by solving a transcendental equation using bisection method. We also find the location along the rotating beam where equivalent constant tension for the stiff string acts for a given mode. Both Euler-Bernoulli and Timoshenko beams are considered for numerical results. The results provide physical insight into relation between rotating beams and stiff string which are useful for creating basis functions for approximate methods in vibration analysis of rotating beams.
Resumo:
Porous zirconia ceramic monoliths have been extensively used in thermo-structural applications due to their inherent low thermal conductivity in combination with their adaptability to form complicated shapes through advanced ceramic processing techniques. However, extruded cellular honeycomb structures made from these materials have been less explored for thermal management applications. There exist large potential applications due to their unique configurations, resulting in better heat-management mechanisms. Some of the studies carried out on zirconia honeycombs are safeguarded through patents due to its technical importance, or the information is not in the public domain. In the present study, for the sake of comparison, honeycomb specimens with varying wall thicknesses and unit cell lengths maintaining almost same bulk density of around 90% theoretical and relative density of 0.34-0.37 were prepared and subjected to thermal conductivity evaluation along with the solid samples with relative density of 1.0 using monotonic heating regime methodology. In addition, the effect of channel shape was also evaluated using square and triangular channeled honeycombs with the same relative densities. The results obtained from these specimens were correlated with their configurations to bring out the advantages accrued by using the honeycomb with these configurations. It was observed that a significant decrease in thermal conductivity was achieved in honeycombs, which can be attributed to the behavior of various heat transfer mechanisms that are operative at high temperatures in combination with the considerable reduction in thermal mass and the consequent conduction through the solids.
Resumo:
Objective: The present study was undertaken to evaluate the antitumor and antioxidant status of ethanol extract of Terminalia catappa leaves against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Materials and Methods: The leaves powder was extracted with Soxhlet apparatus and subjected to hot continuous percolation using ethanol (95% v/v). Tumor bearing animals was treated with 50 and 200 mg/kg of ethanol extract. EAC induced in mice by intraperitoneal injection of EAC cells 1 x 10(6) cells/mice. The study was assed using life span of EAC-bearing hosts, hematological parameters, volume of solid tumor mass and status of antioxidant enzymes such as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities. Total phenolics and flavonoids contents from the leaves extract were also determined. Results: Total phenolics and flavonoids contents from the leaves extract were found 354.02 and 51.67 mg/g extract. Oral administration of ethanol extract of T. catappa (50 and 200 mg/kg) increased the life span (27.82% and 60.59%), increased peritoneal cell count (8.85 +/- 0.20 and 10.37 +/- 0.26) and significantly decreased solid tumor mass (1.16 +/- 0.14 cm(2)) at 200 mg/kg as compared with EAC-tumor bearing mice (P < 0.01). Hematological profile including red blood cell count, white blood cell count, hemoglobin (11.91 +/- 0.47 % g) and protein estimation were found to be nearly normal levels in extract-treated mice compared with tumor bearing control mice. Treatment with T. catappa significantly decreased levels of LPO and GSH, and increased levels of SOD and CAT activity (P < 0.01). Conclusion: T. catappa exhibited antitumor effect by modulating LPO and augmenting antioxidant defense systems in EAC bearing mice. The phenolic and flavonoid components in this extract may be responsible for antitumor activity.
Resumo:
Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.
Resumo:
Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.
Resumo:
Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.
Resumo:
In this paper, the free vibration of a rotating Euler-Bernoulli beam is studied using an inverse problem approach. We assume a polynomial mode shape function for a particular mode, which satisfies all the four boundary conditions of a rotating beam, along with the internal nodes. Using this assumed mode shape function, we determine the linear mass and fifth order stiffness variations of the beam which are typical of helicopter blades. Thus, it is found that an infinite number of such beams exist whose fourth order governing differential equation possess a closed form solution for certain polynomial variations of the mass and stiffness, for both cantilever and pinned-free boundary conditions corresponding to hingeless and articulated rotors, respectively. A detailed study is conducted for the first, second and third modes of a rotating cantilever beam and the first and second elastic modes of a rotating pinned-free beam, and on how to pre-select the internal nodes such that the closed-form solutions exist for these cases. The derived results can be used as benchmark solutions for the validation of rotating beam numerical methods and may also guide nodal tailoring. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.
Resumo:
In the present study, we have made an effort to develop the novel synthetic antioxidants and antimicrobials with improved potency. The novel benzofuran-gathered C-2,4,6-substituted pyrimidine derivatives 5a, 5b, 5c, 5d, 5e, 5f, 6a, 6b, 6c, 6d, 6e, 6f, 7a, 7b, 7c, 7d, 7e, 7f, 8a, 8b, 8c, 8d, 8e, 8f, 9a, 9b, 9c, 9d, 9e, 9f were synthesized by simple and efficient four-step reaction pathway. Initially, o-alkyl derivative of salicylaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, upon the treatment with potassium tertiary butoxide in the presence of molecular sieves. Further, Claisen-Schmidt condensation with aromatic aldehydes via treatment with thiourea followed by coupling reaction with different sulfonyl chlorides afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, and elemental analysis and further screened for their antioxidant and antimicrobial activities. The results showed that the synthesized compounds 8b, 8e, 9b, and 9e produced significant antioxidant activity with 50% inhibitory concentration higher than that of reference, whereas compounds 7d and 7c produced dominant antimicrobial activity at concentrations 1.0 and 0.5mg/mL compared with standard Gentamicin and Nystatin, respectively.