38 resultados para multi-mode laser
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.
Resumo:
In this work, we synthesized bulk amorphous GeGaS glass by conventional melt quenching technique. Amorphous nature of the glass is confirmed using X-ray diffraction. We fabricated the channel waveguides on this glass using the ultrafast laser inscription technique. The waveguides are written on this glass 100 mu m below the surface of the glass with a separation of 50 ae m by focusing the laser beam into the material using 0.67 NA lens. The laser parameters are set to 350 fs pulse duration at 100 KHz repetition rate. A range of writing energies with translation speeds 1 mm/s, 2 mm/s, 3 mm/s and 4 mm/s were investigated. After fabrication the waveguides facets were ground and polished to the optical quality to remove any tapering of the waveguide close to the edges. We characterized the loss measurement by butt coupling method and the mode field image of the waveguides has been captured to compare with the mode field image of fibers. Also we compared the asymmetry in the shape of the waveguide and its photo structural change using Raman spectra.
Resumo:
A wobble instability is one of the major problems of a three-wheeled vehicle commonly used in India, and these instabilities are of great interest to industry and academia. In this paper, we studied this instability using a multi-body dynamic model and with experiments conducted on a prototype three-wheeled vehicle on a test track. The multi-body dynamic model of a three-wheeled vehicle is developed using the commercial software ADAMS/Car. In an initial model, all components including main structures such as the frame, the steering column and the rear forks are assumed to be rigid bodies. A linear eigenvalue analysis, which is carried out at different speeds, reveals a mode that has predominantly a steering oscillation, also called a wobble mode, with a frequency of around 5-6Hz. The analysis results shows that the damping of this mode is low but positive up to the maximum speed of the three-wheeled vehicle. However, the experimental study shows that the mode is unstable at speeds below 8.33m/s. To predict and study this instability in detail, a more refined model of the three-wheeled vehicle, with flexibilities of three important bodies, was constructed in ADAMS/Car. With flexible bodies, three modes of a steering oscillation were observed. Two of these are well damped and the other is lightly damped with negative damping at lower speeds. Simulation results with flexibility incorporated show a good match with the instability observed in the experimental studies. Further, we investigated the effect of each flexible body and found that the flexibility of the steering column is the major contributor for wobble instability and is similar to the wheel shimmy problem in aircraft.
Resumo:
The current work addresses the use of producer gas, a bio-derived gaseous alternative fuel, in engines designed for natural gas, derived from diesel engine frames. Impact of the use of producer gas on the general engine performance with specific focus on turbo-charging is addressed. The operation of a particular engine frame with diesel, natural gas and producer gas indicates that the peak load achieved is highest with diesel fuel (in compression ignition mode) followed by natural gas and producer gas (both in spark ignite mode). Detailed analysis of the engine power de-rating on fuelling with natural gas and producer gas indicates that the change in compression ratio (migration from compression to spark ignited mode), difference in mixture calorific value and turbocharger mismatch are the primary contributing factors. The largest de-rating occurs due to turbocharger mismatch. Turbocharger selection and optimization is identified as the strategy to recover the non-thermodynamic power loss, identified as the recovery potential (the loss due to mixture calorific value and turbocharger mismatch) on operating the engine with a fuel different from the base fuel. A turbocharged after-cooled six cylinder, 5.9 l, 90 kWe (diesel rating) engine (12.2 bar BMEP) is available commercially as a naturally aspirated natural gas engine delivering a peak load of 44.0 kWe (6.0 bar BMEP). The engine delivers a load of 27.3 kWe with producer gas under naturally aspirated mode. On charge boosting the engine with a turbocharger similar in configuration to the diesel engine turbocharger, the peak load delivered with producer gas is 36 kWe (4.8 bar BMEP) indicating a de-rating of about 60% over the baseline diesel mode. Estimation of knock limited peak load for producer gas-fuelled operation on the engine frame using a Wiebe function-based zero-dimensional code indicates a knock limited peak load of 76 kWe, indicating the potential to recover about 40 kWe. As a part of the recovery strategy, optimizing the ignition timing for maximum brake torque based on both spark sweep tests and established combustion descriptors and engine-turbocharger matching for producer gas-fuelled operation resulted in a knock limited peak load of 72.8 kWe (9.9 bar BMEP) at a compressor pressure ratio of 2.30. The de-rating of about 17.0 kWe compared to diesel rating is attributed to the reduction in compression ratio. With load recovery, the specific biomass consumption reduces from 1.2 kg/kWh to 1.0 kg/kWh, an improvement of over 16% while the engine thermal efficiency increases from 28% to 32%. The thermodynamic analysis of the compressor and the turbine indicates an isentropic efficiency of 74.5% and 73%, respectively.
Resumo:
Waveguides have been fabricated on melt-quenched, bulk chalcogenide glasses using the femto-second laser inscription technique at low repetition rates in the single scan regime. The inscribed waveguides have been characterized by butt-coupling method and the diameter of the waveguide calculated using the mode-field image of the waveguide. The waveguide cross-section symmetry is analyzed using the heat diffusion model by relating the energy and translation speed of the laser. The net-fluence and symmetry of the waveguides are correlated based on the theoretical values and experimental results of guiding cross-section.
Resumo:
In this paper, three dimensional impact angle control guidance laws are proposed for stationary targets. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal 2-dimensional planes, the guidance laws are derived using the coupled dynamics. These guidance laws are designed using principles of conventional as well as nonsingular terminal sliding mode control theory. The guidance law based on nonsingular terminal sliding mode guarantees finite time convergence of interceptor to the desired impact angle. In order to derive the guidance laws, multi-dimension switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance law.
Resumo:
Semiconductor fabrication process begins with photolithography. Preparing a photo mask is the key process step in photolithography. The photo mask was fabricated by inscribing patterns directly onto a soda lime glass with the help of a laser beam, as it is easily controllable. Laser writer LW405-A was used for preparing the mask in this study. Exposure wavelength of 405 nm was used, with which 1.2 mu m feature size can be written in direct write-mode over the soda lime glass plate. The advantage of using the fabricated mask is that it can be used to design back contacts for thin film Photovoltaic (PV) solar cells. To investigate the process capability of LW405-A, same pattern with different line widths was written on soda lime glass samples at different writing speeds. The pattern was inscribed without proximity effect and stitching errors, which was characterized using optical microscope and field emission scanning electron microscope (FE-SEM). It was proven that writing speed of a mask-writer is decided according to the intended feature size and line width. As the writing speed increases, the edges of the patterns become rougher due to uneven scattering of the laser beam. From the fabricated mask, the solar cell can be developed embedding both the contacts at the bottom layer, to increase the absorption of solar radiation on the top surface effectively by increasing light absorption area.
Resumo:
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.