148 resultados para molecular Coulombic over barrier model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oxidative dehydrogenation of ethylbenzene is gaining considerable importance in recent years as a promising alternative for styrene production. This vapour phase reaction has been studied over Pd-NaBr/Al2O3 catalyst in the temperature range 623-793 K in a fixed bed reactor. Kinetic analysis of this reaction has been done using a recursion procedure developed in this work from first principles. The advantage of this method is the absence of any restriction on the conversion level as it uses an integrated rate equation. The rate of styrene formation was found to follow a linear relationship with concentration of ethylbenzene and shows a Langmuir type dependence on the concentration of oxygen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Potassium disilicate glass and melt have been investigated by using anew partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygen-rich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG(3)) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of various parameters on the velocity of the induced jet produced by a dielectric barrier discharge (DBD) plasma was studied experimentally. The glow discharge was created at atmospheric conditions by using a high voltage RF power supply. Flow visualization and photographic studies of the plasma were performed. The parametric investigation of the characteristics of the plasma show that the width of the plasma in the uniform glow discharge regime was an indication of the velocity induced under stagnant conditions. It was observed that the spanwise overlap of the two electrodes, dielectric thickness, voltage and frequency of the applied voltage are the major parameters that govern the velocity and the extent of plasma in the streamwise direction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Owing to the lack of atmospheric vertical profile data with sufficient accuracy and vertical resolution, the response of the deep atmosphere to passage of monsoon systems over the Bay of Bengal. had not been satisfactorily elucidated. Under the Indian Climate Research Programme, a special observational programme called 'Bay of Bengal Monsoon Experiment' (BOBMEX), was conducted during July-August 1999. The present study is based on the high-resolution radiosondes launched during BOBMEX in the north Bay. Clear changes in the vertical thermal structure of the atmosphere between active and weak phases of convection have been observed. The atmosphere cooled below 6 km height and became warmer between 6 and 13 km height. The warmest layer was located between 8 and 10 km height, and the coldest layer was found just below 5 km height. The largest fluctuations in the humidity field occurred in the mid-troposphere. The observed changes between active and weak phases of convection are compared with the results from an atmospheric general circulation model, which is similar to that used at the National Centre for Medium Range Weather Forecasting, New Delhi. The model is not able to capture realistically some important features of the temperature and humidity profiles in the lower troposphere and in the boundary layer during the active and weak spells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrical transport behavior of n-n indium nitride nanodot-silicon (InN ND-Si) heterostructure Schottky diodes is reported here, which have been fabricated by plasma-assisted molecular beam epitaxy. InN ND structures were grown on a 20 nm InN buffer layer on Si substrates. These dots were found to be single crystalline and grown along [0 0 0 1] direction. Temperature-dependent current density-voltage plots (J-V-T) reveal that the ideality factor (eta) and Schottky barrier height (SBH) (Phi(B)) are temperature dependent. The incorrect values of the Richardson constant (A**) produced suggest an inhomogeneous barrier. Descriptions of the experimental results were explained by using two models. First one is barrier height inhomogeneities (BHIs) model, in which considering an effective area of the inhomogeneous contact provided a procedure for a correct determination of A**. The Richardson constant is extracted similar to 110 A cm(-2) K(-2) using the BHI model and that is in very good agreement with the theoretical value of 112 A cm(-2) K(-2). The second model uses Gaussian statistics and by this, mean barrier height Phi(0) and A** were found to be 0.69 eV and 113 A cm(-2) K(-2), respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the recent past, there have been enormous efforts to understand effect of drugs on human body. Prior to understand the effect of drugs on human body most of the experiments are carried out on cells or model organisms. Here we present our study on the effect of chemotherapeutic drugs on cancer cells and the acetaminophen (APAP) induced hepatotoxicity in mouse model. Histone deacetylase inhibitors (HDIs) have attracted attention as potential drug molecules for the treatment of cancer. These are the chemotherapeutic drugs which have indirect mechanistic action against cancer cells via acting against histone deacetylases (HDAC). It has been known that different HDAC enzymes are over-expressed in various types of cancers for example; HDAC1 is over expressed in prostate, gastric and breast carcinomas. Therefore, in order to optimise chemotherapy, it is important to determine the efficacy of various classes of HDAC inhibitor drugs against variety of over-expressed HDAC enzymes. In the present study, FTIR microspectroscopy has been employed to predict the acetylation and propionylation brought in by HDIs. The liver plays an important role in cellular metabolism and is highly susceptible to drug toxicity. APAP which is an analgesic and antipyretic drug is extensively used for therapeutic purposes and has become the most common cause of acute liver failure (ALF). In the current study, we have focused to understand APAP induced hepatotoxicity using FTIR microspectroscopy. In the IR spectrum the bands corresponding to glycogen, ester group and were found to be suitable markers to predict liver injury at early time point (0.5hr) due to APAP both in tissue and serum in comparison to standard biochemical assays. Our studies show the potential of FTIR spectroscopy as a rapid, sensitive and non invasive detection technique for future clinical diagnosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The van der Waals and Platteuw (vdVVP) theory has been successfully used to model the thermodynamics of gas hydrates. However, earlier studies have shown that this could be due to the presence of a large number of adjustable parameters whose values are obtained through regression with experimental data. To test this assertion, we carry out a systematic and rigorous study of the performance of various models of vdWP theory that have been proposed over the years. The hydrate phase equilibrium data used for this study is obtained from Monte Carlo molecular simulations of methane hydrates. The parameters of the vdWP theory are regressed from this equilibrium data and compared with their true values obtained directly from simulations. This comparison reveals that (i) methane-water interactions beyond the first cage and methane-methane interactions make a significant contribution to the partition function and thus cannot be neglected, (ii) the rigorous Monte Carlo integration should be used to evaluate the Langmuir constant instead of the spherical smoothed cell approximation, (iii) the parameter values describing the methane-water interactions cannot be correctly regressed from the equilibrium data using the vdVVP theory in its present form, (iv) the regressed empty hydrate property values closely match their true values irrespective of the level of rigor in the theory, and (v) the flexibility of the water lattice forming the hydrate phase needs to be incorporated in the vdWP theory. Since methane is among the simplest of hydrate forming molecules, the conclusions from this study should also hold true for more complicated hydrate guest molecules.