33 resultados para mineral trioxide aggregate
Resumo:
A comparative study of two bacterial strains namely, Bacillus licheniformis and Bacillus firmus in the production of bioflocculants was made. The highest bioflocculant yield of 16.55 g/L was obtained from B. licheniformis (L) and 10 g/L from B. firmus (F). The bioflocculants obtained from the bacterial species were water soluble and insoluble in organic solvents. FTIR spectral analysis revealed the presence of hydroxyl, carboxyl and sugar derivatives in the bioflocculants. Thermal characterization by differential scanning calorimetry (DSC) showed the crystalline transition and the melting point (T-m) at 90-100 degrees C. Effects of bioflocculant dosage and pH on the flocculation of clay fines were evaluated. Highest bioflocculation efficiency on kaolin clay suspensions was observed at an optimum bioflocculant dosage of 5 g/L. The optimum pH range for the maximum bioflocculation was at pH 7-9. Bioflocculants exhibited high efficiency in dye decolorization. The maximum Cr (VI) removal was found to be 85 % for L (bioflocculant dosage at 2 g/L). This study demonstrates that microbial bioflocculants find potential applications in mineral processing such as selective flocculation of mineral fines, decolorization of dye solutions and in the remediation of toxic metal solutions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The micro-level properties of different self compacting concrete (SCC) mixes with and without mineral admixures are studied. The study considers SCC as a two phase material consisting of matrix and aggregate. Micro indentation technique is employed to obtain the hardness of individual phases and to compute the micro-property (modulus of elasticity). Using a self consistent homogenization procedure, the micro-property is scaled-up to obtain the macro-property which is shown to agree with the experimentally obtained macro values. It is seen that there exists a smaller interfacial transition zone at different ages of curing across all the mixes due to the presence of more fines in SCC. Also, there is no significant change in the property of the SCC having no fly ash or silica fume beyond 28 days whereas a substantial change in the micro and macro properties are seen in the SCC having fly ash and silica fume.
Resumo:
The selective flotation of sphalerite from a sphalerite-galena mineral mixture was achieved using cellular components of Paenibacillus polymyxa after adaptation to the above minerals. The soluble and insoluble fractions of the thermolysed bacterial cells adapted to sphalerite yielded higher flotation recoveries of sphalerite with selectivity indices ranging between 22 and 29. The protein profile for the unadapted and mineral-stressed cells was found to differ distinctly, attesting to variation in the yield and nature of extra-cellular polymeric substances. The changes induced in the bacterial cell wall components after adaptation to sphalerite or galena with respect to the contents of phosphate, uronic acid and acetylated sugars of P. polymyxa were quantified. In keeping with these changes, a marginal morphological transition of P. polymyxa from rods to spheres was observed. The role of the dissolved metal ions from the minerals as well as that of the constituents of extracellular secretions in modulating the surface potential of the mineral-stressed cells were demonstrated. These studies highlighted that, mineral stress led to qualitative and quantitative changes in the cellular components, which facilitated the enhancement of flotation selectivity of sphalerite.