42 resultados para melt season


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degree of branching (DB) describes the level of structural perfection of a hyperbranched polymer when compared to its defect-free analogue, namely the dendrimer. The strategy most commonly used to achieve high DB values, specifically while using AB(2) type self-condensations, is to design an AB2 monomer wherein the reaction of the first B-group leads to an enhancement of the reactivity of the second one. In the present study, we show that an AB2 monomer carrying a dimethylacetal unit and a thiol group undergoes a rapid self-condensation in the melt under acid-catalysis to yield a hyperbranched polydithioacetal with no linear defects. NMR studies using model systems reveal that the intermediate monothioacetal is relatively unstable under the polymerization conditions and transforms rapidly to the dithioacetal; because this second step occurs irreversibly during polymer formation, it leads to a defect-free hyperbranched polydithioacetal. TGA studies of the polymerization process provided some valuable insights into the kinetics of polymerization. An additional virtue of this approach is that the numerous terminal dimethylacetal groups are very labile and can be quantitatively transformed by treatment with a variety of functional thiols; the terminal dimethylacetals were, thus, reacted with various thiols, such as dodecanethiol, benzyl mercaptan, ethylmercaptopropionate, and so on, to demonstrate the versatility of these systems as sulfur-rich hyperscaffolds to anchor different kinds of functionality on their periphery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered LiNi0.8Co0.2O2 crystallizing in R (3) over barm space group is synthesized by decomposing the constituent metal-nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals <2% Li-Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge-discharge cycles reflect a first-discharge capacity of 184 mAh g(-1) which is stabilized at 170 mAh g(-1) over 50 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), tetradecyltrimehtylammonium bromide (TTAB) and hexadecyltrimethylammonium bromide (HTAB); and anionic surfactants such as sodium decyl sulphate (SDeS), sodium dodecyl sulphate (SDS) and sodium tetradecyl sulphate (STDS) have been used to determine their solubility and micellization in ternary eutectic melt (acetamide + urea + ammonium nitrate) at 50 degrees C. We employed the electrical conductivity and the surface tension measurement techniques to determine the critical micelle concentration (CMC). The deviation in the slope of the specific conductance/surface tension against surfactant concentration plots indicated the aggregations of surfactants and hence, their CMC. CMC decreases with increase of alkyl chain length due to the increased van der Waals forces. The calculated increment in Gibb's energy per methylene group for cationic and anionic surfactants is about -6 kJ mol(-1) and -4 kJ mol(-1) respectively. It is found that, the CMCs of the surfactants in the ternary melt are higher than the CMCs of same surfactants in water (similar to 25 degrees C). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers have a direct relation with climate change. The equilibrium line altitude (ELA) is the most useful parameter to study the effect of climate change on glaciers. The ELA is a theoretical snowline at which the glacier mass balance is zero. Snowline altitude (SLA) at the end of melting season is generally regarded as the ELA. Glaciers of Chandra-Bhaga basin in Lahaul-Spiti district of Himachal Pradesh were chosen to study the ELA, using satellite images from 1980 to 2007. A total of 19 glaciers from the Chandra-Bhaga basin were identified and selected to carry out the study of ELA variation over 27 years. This study reveals that the mean SLA of the sub-basin has increased from 5009 +/- 61m to 5401 +/- 21m from 1980 to 2007. The study is in agreement with the reported increase in the temperature and decrease in winter snowfall of North-West Himalaya in the last century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose-In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach-The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings-Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value-As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. Sometimes, the metastable phase might have a lower free energy minimum than the liquid but higher than the stable-solid-phase minimum and have characteristics in between the parent liquid and the globally stable solid phase. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can ``wet'' the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier because surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work, we discuss a density functional theory (DFT)-based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order-parameter-dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier, and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of the Ostwald step rule and the well-known phenomenon of ``disappearing polymorphs'' that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics, some of which may be explored via modem nanoscopic synthetic methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-condensation of AB(2) type monomers (containing one A-type and two B-type functional groups) generates hyperbranched (HB) polymers that carry numerous B-type end-groups at their molecular periphery; thus, development of synthetic methods that directly provide quantitatively transformable peripheral B groups would be of immense value as this would provide easy access to multiply functionalized HB systems. A readily accessible AB(2) monomer, namely diallyl, 5-(4-hydroxybutoxy)isophthalate was synthesized, which on polymerization under standard melt-transesterfication conditions yielded a peripherally clickable HB polyester in a single step; the allyl groups were quantitatively reacted with a variety of thiols using the facile photoinitiated thiol-ene reaction to generate a wide range of derivatives, with varying solubility and thermal properties. Furthermore, it is shown that the peripheral allyl double bonds can also be readily epoxidized using meta-chloroperoxybenzoic acid to yield interesting HB systems, which could potentially serve as a multifunctional cross-linking agent in epoxy formulations. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40248.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015