60 resultados para mapping projections
Resumo:
Landslides are hazards encountered during monsoon in undulating terrains of Western Ghats causing geomorphic make over of earth surface resulting in significant damages to life and property. An attempt is made in this paper to identify landslides susceptibility regions in the Sharavathi river basin downstream using frequency ratio method based on the field investigations during July- November 2007. In this regard, base layers of spatial data such as topography, land cover, geology and soil were considered. This is supplemented with the field investigations of landslides. Factors that influence landslide were extracted from the spatial database. The probabilistic model -frequency ratio is computed based on these factors. Landslide susceptibility indices were computed and grouped into five classes. Validation of LHS, showed an accuracy of 89% as 25 of the 28 regions tallied with the field condition of highly vulnerable landslide regions. The landslide susceptible map generated for the downstream would be useful for the district officials to implement appropriate mitigation measures to reduce hazards.
Resumo:
Image fusion techniques are useful to integrate the geometric detail of a high-resolution panchromatic (PAN) image and the spectral information of a low-resolution multispectral (MSS) image, particularly important for understanding land use dynamics at larger scale (1:25000 or lower), which is required by the decision makers to adopt holistic approaches for regional planning. Fused images can extract features from source images and provide more information than one scene of MSS image. High spectral resolution aids in identification of objects more distinctly while high spatial resolution allows locating the objects more clearly. The geoinformatics technologies with an ability to provide high-spatial-spectral-resolution data helps in inventorying, mapping, monitoring and sustainable management of natural resources. Fusion module in GRDSS, taking into consideration the limitations in spatial resolution of MSS data and spectral resolution of PAN data, provide high-spatial-spectral-resolution remote sensing images required for land use mapping on regional scale. GRDSS is a freeware GIS Graphic User Interface (GUI) developed in Tcl/Tk is based on command line arguments of GRASS (Geographic Resources Analysis Support System) with the functionalities for raster analysis, vector analysis, site analysis, image processing, modeling and graphics visualization. It has the capabilities to capture, store, process, analyse, prioritize and display spatial and temporal data.
Resumo:
Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. The efficiency of a cache for this application critically depends on the placement function to reduce conflict misses. Traditional placement functions use a one-level mapping that naively partitions trie-nodes into cache sets. However, as a significant percentage of trie nodes are not useful, these schemes suffer from a non-uniform distribution of useful nodes to sets. This in turn results in increased conflict misses. Newer organizations such as variable associativity caches achieve flexibility in placement at the expense of increased hit-latency. This makes them unsuitable for L1 caches.We propose a novel two-level mapping framework that retains the hit-latency of one-level mapping yet incurs fewer conflict misses. This is achieved by introducing a secondlevel mapping which reorganizes the nodes in the naive initial partitions into refined partitions with near-uniform distribution of nodes. Further as this remapping is accomplished by simply adapting the index bits to a given routing table the hit-latency is not affected. We propose three new schemes which result in up to 16% reduction in the number of misses and 13% speedup in memory access time. In comparison, an XOR-based placement scheme known to perform extremely well for general purpose architectures, can obtain up to 2% speedup in memory access time.
Resumo:
Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is presented and applied to India. Energy use and fuel choice is determined for five end-use functions (cooking, water heating, space heating, lighting and appliances) and for five different income quintiles in rural and urban areas. The paper specifically explores the consequences of different assumptions for income distribution and rural electrification on residential sector energy use and CO(2) emissions, finding that results are clearly sensitive to variations in these parameters. As a result of population and economic growth, total Indian residential energy use is expected to increase by around 65-75% in 2050 compared to 2005, but residential carbon emissions may increase by up to 9-10 times the 2005 level. While a more equal income distribution and rural electrification enhance the transition to commercial fuels and reduce poverty, there is a trade-off in terms of higher CO(2) emissions via increased electricity use. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A two-stage methodology is developed to obtain future projections of daily relative humidity in a river basin for climate change scenarios. In the first stage, Support Vector Machine (SVM) models are developed to downscale nine sets of predictor variables (large-scale atmospheric variables) for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) (A1B, A2, B1, and COMMIT) to R (H) in a river basin at monthly scale. Uncertainty in the future projections of R (H) is studied for combinations of SRES scenarios, and predictors selected. Subsequently, in the second stage, the monthly sequences of R (H) are disaggregated to daily scale using k-nearest neighbor method. The effectiveness of the developed methodology is demonstrated through application to the catchment of Malaprabha reservoir in India. For downscaling, the probable predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis data set for the period 1978-2000 and (2) simulations of the third-generation Canadian Coupled Global Climate Model for the period 1978-2100. The performance of the downscaling and disaggregation models is evaluated by split sample validation. Results show that among the SVM models, the model developed using predictors pertaining to only land location performed better. The R (H) is projected to increase in the future for A1B and A2 scenarios, while no trend is discerned for B1 and COMMIT.
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
Climate projections for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) are made using the newly developed representative concentration pathways (RCPs) under the Coupled Model Inter-comparison Project 5 (CMIP5). This article provides multi-model and multi-scenario temperature and precipitation projections for India for the period 1860-2099 based on the new climate data. We find that CMIP5 ensemble mean climate is closer to observed climate than any individual model. The key findings of this study are: (i) under the business-as-usual (between RCP6.0 and RCP8.5) scenario, mean warming in India is likely to be in the range 1.7-2 degrees C by 2030s and 3.3-4.8 degrees C by 2080s relative to pre-industrial times; (ii) all-India precipitation under the business-as-usual scenario is projected to increase from 4% to 5% by 2030s and from 6% to 14% towards the end of the century (2080s) compared to the 1961-1990 baseline; (iii) while precipitation projections are generally less reliable than temperature projections, model agreement in precipitation projections increases from RCP2.6 to RCP8.5, and from short-to long-term projections, indicating that long-term precipitation projections are generally more robust than their short-term counterparts and (iv) there is a consistent positive trend in frequency of extreme precipitation days (e.g. > 40 mm/day) for decades 2060s and beyond. These new climate projections should be used in future assessment of impact of climate change and adaptation planning. There is need to consider not just the mean climate projections, but also the more important extreme projections in impact studies and as well in adaptation planning.
Resumo:
This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.
Resumo:
This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.
Resumo:
Glycodelin A (GdA) is a dimeric glycoprotein synthesized by the human endometrium under progesterone regulation. Based on the high sequence similarity with beta-lactoglobulin, it is placed under the lipocalin superfamily. The protein is one of the local immunomodulators present at the feto-maternal interface which affects both the innate as well as the acquired arms of the immune system, thereby bringing about successful establishment and progression of pregnancy. Our previous studies revealed that the domain responsible for the immunosuppressive activity of glycodelin lies on its protein backbone and the glycans modulate the same. This study attempts to further delineate the apoptosis inducing region of GdA. Our results demonstrate that the stretch of amino acid sequence between Met24 to Leu105 is necessary and sufficient to inhibit proliferation of T cells and induce apoptosis in them. Further, within this region the key residues involved in harboring the activity were shown to be present between Asp52 and Ser65.
Resumo:
Here, we report for the first time a simple thermal oxidation strategy for the large area synthesis of Ge/GeO2 nanoholes from Ge and studied the luminescence of Ge/GeO2 and hole formation mechanism through phase and luminescence mapping. Photoluminescence mapping reveals that the emission in the visible range is only from the hole region, which provokes the necessity of the nanoholes. Such materials can also be used to convert ultraviolet to visible radiation for detection by conventional phototubes and to coat blue or ultraviolet diodes to obtain white light.
Resumo:
Impact of global warming on daily rainfall is examined using atmospheric variables from five General Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data at grid points over the catchment for a continuous time period 1971-2000 (current climate) are used to calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change - Special Report on Emission Scenarios) A2 emission scenario for the same period are used to validate the results. Following this, future downscaled rainfall projections are constructed and examined for two 20 year time slices viz. 2055 (i.e. 2046-2065) and 2090 (i.e. 2081-2100). The model results show reasonable skill in simulating the rainfall over the study region for the current climate. The downscaled rainfall projections indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2% decrease by 2055 and 5% decrease by 2090 in monsoon (HAS) rainfall compared to the current climate (1971-2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and post-monsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in 2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for 2055 and 2090, respectively.
Resumo:
The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.
Resumo:
Single receive antenna selection (AS) allows single-input single-output (SISO) systems to retain the diversity benefits of multiple antennas with minimum hardware costs. We propose a single receive AS method for time-varying channels, in which practical limitations imposed by next-generation wireless standards such as training, packetization and antenna switching time are taken into account. The proposed method utilizes low-complexity subspace projection techniques spanned by discrete prolate spheroidal (DPS) sequences. It only uses Doppler bandwidth knowledge, and does not need detailed correlation knowledge. Results show that the proposed AS method outperforms ideal conventional SISO systems with perfect CSI but no AS at the receiver and AS using the conventional Fourier estimation/prediction method. A closed-form expression for the symbol error probability (SEP) of phase-shift keying (MPSK) with symbol-by-symbol receive AS is derived.