484 resultados para magnetic collection
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
second moment measurements are carried out on [(CH,),N], CdI, in the temperature range 77 to 400 K. The results are interpreted based on a molecular dynamical model of randomly reorienting methyl groups and isotropically tumbling tetramethyl ammonium group. The relaxation data show contributions from spin-rotation interaction at high temperatures and presence of inequivalent methyl groups. The correlation times and associated activation energies, connected with this model, are calculated from the data. The structure in the absorption line and in the free-induction decay signal at 77 K indicates the possibility of tunnelling motion of the methyl groups. Im Temperaturbereich 77 bis 400 K werden an [(CH,),N],CdI, Protonen-Spin-Gitter-Relaxationsexperimente (bei Larmorfrequenzen von 10,20 und 30 MHz) und Messungen des zweiten Moments durchgefiihrt. Die Ergebnisse werden an Hand eines molekularen dynamischen Modells sich statistisch umorientierender Methylgruppen und isotrop taumelnder Tetramethyl-Ammoniumgruppen interpretiert. Die Relaxationswerte zeigen Beitriige von Spin-Rotations-Wechselwirkung bei hohen Temperaturen und die Anwesenheit von inaquivalenten Methylgruppen. Die Korrelationszeiten und verknupften Aktivierungsenergien, die mit diesem Model1 verbunden sind, werden am den Werten berechnet. Die Struktur in der Absorptionslinie und im Abklingsignal der freien Induktion bei 77 K zeigt die Moglichkeit einer Tunnelbewegung der Methylgruppen.
Resumo:
Proton spin lattice relaxation (T1) in (CH3)4NCdBr3 at different Larmor frequencies (10, 20 and 30 MHz) has been studied in the temperature range 77 to 400 K. The variations in T1 at high temperature are independent of frequency and show a maximum due to spin rotation- interaction. The other features are interpreted as being due to isotropic tumbling of the tetramethylammonium ion and random reorientation of the CH3 group. The CW spectrum remained narrow up to 77 K and develops a wing structure at low temperatures. This observation is attributed to a possible tunnelling motion of the CH3 group, which has rather low activation energy as demonstrated by the study of T1.
Resumo:
It is shown that the conclusions arrived at regarding the instability of an incompressible fluid cylinder in the presence of the magnetic field and the streaming velocity in a recent communication easily follow from the study of propagation characteristics of Alfvén surface waves along cylindrical plasma columns made earlier.
Resumo:
The Landau damping of sound wave in a plasma consisting of an ensemble of magnetic flux tubes with reference to the work by Ryutov and Ryutova (1976) is discussed. Sound waves cannot be Landau damped in general but under certain restriction conditions on plasma parameters the possibility of absorption of these waves can exist.
Resumo:
Complexation of valinomycin (VM) with the divalent cation Ca2+ in a lipophilic solvent, acetonitrile (CH3-CN), has been studied by using circular dichroism and proton and carbon- 13 nuclear magnetic resonance (‘H NMR and I3C NMR). From analyses of the spectral data, it is concluded that VM forms a 2:l (peptideion-peptide) sandwich complex with Ca2+, at low concentration of VM. At moderate conocentrations of the salt, in addition to the sandwich complex, an equimolar (1:l) complex different from those observed for potassium and sodium is also observed. At very large concentrations of the calcium salt, the data suggested a complex with a conformation similar to that of the free VM in polar solvents. Possible conformations for the sandwich and the equimolar VM-calcium complexes are proposed.
Resumo:
For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.
Resumo:
Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
From the proton nmr studies of 2-thiocoumarin and coumarin, it is concluded that the relative interproton distances in the two oxygen heteroatom bicyclic systems are similar. The values for the phenyl ring protons do not deviate significantly from the regular hexagonal geometry, unlike bicyclic systems with nitrogens as the heteroatoms, such as diazanaphthalenes. Larger values of the indirect spin-spin couplings within the protons of the ring containing the oxygen heteroatom, compared to the values between the ortho protons in the phenyl rings in coumarin and 2-thiocoumarin, correspond to the olefinic nature of these protons. This is in contrast to results for the nitrogen heterocycles where both the rings are aromatic.
Resumo:
The appearance of spinning side bands in the 2H NMR spectra of oriented molecules is investigated. A theoretical interpretation of the side-band intensities is carried out. Information derived on the director orientation and distribution as a function of spinning speedis reported.
Resumo:
The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
Magnetic susceptibility studies of lead oxyhalide glasses containing high concentrations of transition metal oxides such as MnO and Fe2O3 have been performed. While they exhibit predominantly antiferromagnetic interactions, the low temperature (<100K) region is dominated by paramagnetic contributions. The behaviour in these glasses is found to be similar to that of covalent oxide glasses and is different from that of purely ionic sulphate glasses.
Resumo:
Studies on the conformational and binding characteristics of the ionophoric antibiotic X-537A (lasalocid-A)�calcium ion complexes have been carried out in deuteriated acetonitrile (CD3 CN) using proton and carbon-13 nuclear magnetic resonance (1 H and 13C n.m.r.) spectroscopy. Detailed analysis of the salt-induced chemical shifts at various X-537A to calcium concentration ratios indicated that X-537A forms charged complexes with calcium with 2 : 1 and 1 : 1 stoicheiometries. The conformational model for the complex based on the n.m.r. data showed that the calcium ion is preferentially bound to one end of the molecule, which is binding to three oxygen atoms, the other end (the salicylic acid part) being relatively free. In the 2 : 1 (sandwich) complex, the calcium ion is sandwiched between two X-537A molecules with three oxygen atoms binding to it from each molecule.