230 resultados para laser experiment
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Lithium caesium sulphate has been reported to undergo a phase transition from the room temperature orthorhombic phase with space groupP cmn to a final phase with space groupP 22/n. Though a sharp anomaly in its physical properties has been found at 202.0;K, it was found that there was a need for careful investigations in the vicinity of 240 and 210.0;K. Since the changes in the crystal structure involve primarily a rotation of the SO4 tetrahedron about thec-axis and as this may be reflected both in the intensity and polarisation of the internal as well as external phonon modes, the laser Raman spectra of oriented single crystals of LiCsSO4 at different temperatures were investigated. For correlation and definite identification of the spectral features, its infrared absorption spectrum was also studied. An analysis of the intensities and polarizations of the internal modes of the sulphate ions reveals the change in symmetry of the crystal. The integrated intensity and peak height of thev 1 line, plotted against temperature show anomalous peaks in the region of the phase transition. Differential scanning calorimetric study gives the enthalpy change ΔH across the phase transition to be 0.213 kJ/mol.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
The analysis of the characteristics of a synchronously mode-locked and internally frequency-doubled dye laser is presented. Dependence of dye laser pulse characteristics on the cavity length mismatch of the pump laser and dye laser is studied. Variation of the minimum pulsewidth with intracavity bandwidth and the harmonic conversion efficiency is presented in the form of graphs.
Resumo:
Cesium hydrogen l-malate monohydrate, CsH(C4H4O5)·H2O, is a new chiral open-framework semi-organic crystalline material with a second-harmonic generation efficiency one order of magnitude greater than KDP. Single crystals of this new material have been grown by the conventional slow cooling technique from aqueous solution. Grown crystals display both platy and prismatic morphologies depending on the imposed supersaturation. Hardness values measured using Vickers hardness indenter show considerable anisotropy. The resistivity behavior at room temperature and above, places the crystal between an ionic conductor and a dielectric. The single-crystal SHG efficiency estimated through Maker fringes experiment gives deff which is 4.24 times that of KDP. Single and multiple shot experiments performed on the grown crystals for the fundamental and second harmonic of pulsed Nd:YAG laser (1064 and 532 nm) show that it exhibits a high laser damage threshold which is a favorable property for nonlinear optical applications.
Resumo:
A simple technique for determining the energy sensitivities for the thermographic recording of laser beams is described. The principle behind this technique is that, if a laser beam with a known spatial distribution such as a Gaussian profile is used for imaging, the radius of the thermal image formed depends uniquely on the intensity of the impinging beam. Thus by measuring the radii of the images produced for different incident beam intensities the minimum intensity necessary (that is, the threshold) for thermographic imaging is found. The diameter of the laser beam can also be found from this measurement. A simple analysis based on the temperature distribution in the laser heated material shows that there is an inverse square root dependence on pulse duration or period of exposure for the energy fluence of the laser beam required, both for the threshold and the subsequent increase in the size of the recording. It has also been shown that except for low intensity, long duration exposure on very low conductivity materials, heat losses are not very significant.
Resumo:
A theory for the emission of X-rays from a high density gaseous plasma interacting with CO2 laser is given. It predicts a sharp increase in the X-ray intensity for densities close to the critical.
Resumo:
Abstract is not available.
Resumo:
Tellurite-based glasses in the TeO2-K3Li2Nb5O15, TeO2-Ba5Li2Ti2Nb8O30, and V2Te2O9 were fabricated by the conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via the X-ray powder diffraction technique and differential thermal analysis, respectively. The as-quenched samples were irradiated by an excimer laser (248 nm). The effect of laser power, duration of irradiation, and the frequency of the laser pulses on the surface features of the above glasses were studied. The optical microscopic studies carried out on the above systems revealed the presence of quasi-periodic and periodic structures on their surfaces. The local compositional variations of these structures were confirmed by back-scattered electron imaging using scanning electron microscope accompanied by energy-dispersive X-ray analysis. These results were convincing enough to state that the glasses in the present investigations had undergone spinodal decomposition on laser irradiation. The incidence of the interconnected texture of two different phases was observed owing to the quenching effect produced by the heating and cooling cycle of the successive laser pulses. Ring- and line-shaped patterns were also observed, respectively, when the pulse frequency of the laser and the duration of irradiation were increased.
Resumo:
We propose a simplified technique for dual wavelength operation of an extended cavity semiconductor laser, and its characterization using electromagnetically induced transparency (EIT). In this laser cavity scheme light beam is made converging before it incidences on the cavity grating. The converging angle of the beam creates two longitudinal oscillating modes of resonating cavity. Frequency separation between the longitudinal modes are measured with the help of beat frequency generation in a photodiode and creating pair of EIT spectra in Rb vapor. The pair of EIT dips that are generated due to dual wavelength of this laser (that is used as control laser) can be used to estimate frequency difference between the generated wavelengths. Width of EIT spectra can be used to estimate line width of individual wavelength components.
Resumo:
We report the application of z-COSY experiment and a band selected version of it by employing a selective 90 degrees pulse entitled BASE-z-COSY for precise chiral discrimination, quantification of enantiomeric excess and the analyses of the H-1 NMR spectra of chiral molecules aligned in the chiral liquid crystalline solvent poly-gamma-benzyl-L-glutamate (PBLG). We have demonstrated their applicability for obtaining very high resolution in the H-1 NMR spectra of small organic molecules. It is well known that the commonly employed z-COSY experiment disentangles the spectral complexity, provides pure phase spectra with high resolution, aids in the complete spectral analyses, in addition to yielding information on relative signs of the Couplings. The BASE-z-COSY experiment possesses all these properties, permits the measure of enantiomeric excess, in addition to large saving of instrument time.
Resumo:
We report the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotube (SWNT) calculated using first-principle Hartre–Fock method (HF) together with classical force field. The binding energy without including the solvation effects of water decreases in the order G>A>T>C. The inclusion of solvation energy changes the order of binding preference to be G>T>A>C. Using isothermal titration (micro) calorimetry experiments, we also show the relative binding affinity to be T>A>C, in agreement with our calculations.
Resumo:
A creep resistant Mg alloy MRI 230D was subjected to laser surface treatment using Nd:YAG laser equipped with a fiber optics beam delivery system in argon atmosphere. The laser surface treatment produced a fine dendritic microstructure and this treatment was beneficial for the corrosion and wear resistance of the alloy. Long-term linear polarisation resistance and Electrochemical Impedance Spectroscopy measurements confirmed that the polarisation resistance values of laser treated material were twice as high as that for the untreated material. This improved behaviour was due to the finer and more homogenous microstructure of the laser treated surface. The laser treatment also increased surface hardness two times and reduced the wear rate by 25% due to grain refinement and solid solution strengthening.
Resumo:
Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.