33 resultados para intergovernmental transfers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of Coupled General Circulation Models (CGCMs) participating in the Intergovernmental Panel for Climate Change's fourth assessment report (IPCC AR4) for the 20th century climate (20C3M scenario) to simulate the daily precipitation over the Indian region is explored. The skill is evaluated on a 2.5A degrees x 2.5A degrees grid square compared with the Indian Meteorological Department's (IMD) gridded dataset, and every GCM is ranked for each of these grids based on its skill score. Skill scores (SSs) are estimated from the probability density functions (PDFs) obtained from observed IMD datasets and GCM simulations. The methodology takes into account (high) extreme precipitation events simulated by GCMs. The results are analyzed and presented for three categories and six zones. The three categories are the monsoon season (JJASO - June to October), non-monsoon season (JFMAMND - January to May, November, December) and for the entire year (''Annual''). The six precipitation zones are peninsular, west central, northwest, northeast, central northeast India, and the hilly region. Sensitivity analysis was performed for three spatial scales, 2.5A degrees grid square, zones, and all of India, in the three categories. The models were ranked based on the SS. The category JFMAMND had a higher SS than the JJASO category. The northwest zone had higher SSs, whereas the peninsular and hilly regions had lower SS. No single GCM can be identified as the best for all categories and zones. Some models consistently outperformed the model ensemble, and one model had particularly poor performance. Results show that most models underestimated the daily precipitation rates in the 0-1 mm/day range and overestimated it in the 1-15 mm/day range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinases are ubiquitous enzymes that are pivotal to many biochemical processes. There are contrasting views on the phosphoryl-transfer mechanism in propionate kinase, an enzyme that reversibly transfers a phosphoryl group from propionyl phosphate to ADP in the final step of non-oxidative catabolism of L-threonine to propionate. Here, X-ray crystal structures of propionate- and nucleotide-bound Salmonella typhimurium propionate kinase are reported at 1.8-2.0 angstrom resolution. Although the mode of nucleotide binding is comparable to those of other members of the ASKHA superfamily, propionate is bound at a distinct site deeper in the hydrophobic pocket defining the active site. The propionate carboxyl is at a distance of approximate to 5 angstrom from the -phosphate of the nucleotide, supporting a direct in-line transfer mechanism. The phosphoryl-transfer reaction is likely to occur via an associative S(N)2-like transition state that involves a pentagonal bipyramidal structure with the axial positions occupied by the nucleophile of the substrate and the O atom between the - and the -phosphates, respectively. The proximity of the strictly conserved His175 and Arg236 to the carboxyl group of the propionate and the -phosphate of ATP suggests their involvement in catalysis. Moreover, ligand binding does not induce global domain movement as reported in some other members of the ASKHA superfamily. Instead, residues Arg86, Asp143 and Pro116-Leu117-His118 that define the active-site pocket move towards the substrate and expel water molecules from the active site. The role of Ala88, previously proposed to be the residue determining substrate specificity, was examined by determining the crystal structures of the propionate-bound Ala88 mutants A88V and A88G. Kinetic analysis and structural data are consistent with a significant role of Ala88 in substrate-specificity determination. The active-site pocket-defining residues Arg86, Asp143 and the Pro116-Leu117-His118 segment are also likely to contribute to substrate specificity.