35 resultados para intelligent manufacturing systems
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.
Resumo:
Fork-join queueing systems offer a natural modelling paradigm for parallel processing systems and for assembly operations in automated manufacturing. The analysis of fork-join queueing systems has been an important subject of research in recent years. Existing analysis methodologies-both exact and approximate-assume that the servers are failure-free. In this study, we consider fork-join queueing systems in the presence of server failures and compute the cumulative distribution of performability with respect to the response time of such systems. For this, we employ a computational methodology that uses a recent technique based on randomization. We compare the performability of three different fork-join queueing models proposed in the literature: the distributed model, the centralized splitting model, and the split-merge model. The numerical results show that the centralized splitting model offers the highest levels of performability, followed by the distributed splitting and split-merge models.
Resumo:
Many knowledge based systems (KBS) transform a situation information into an appropriate decision using an in built knowledge base. As the knowledge in real world situation is often uncertain, the degree of truth of a proposition provides a measure of uncertainty in the underlying knowledge. This uncertainty can be evaluated by collecting `evidence' about the truth or falsehood of the proposition from multiple sources. In this paper we propose a simple framework for representing uncertainty in using the notion of an evidence space.