70 resultados para in situ derivatization
Resumo:
Wear experiments performed on steel disc with increasing load for monolithic MoSi2 of different densities and its composite with TiB2 showed three distinct wear regimes. The specimens exhibited severe wear rate below the lower and above the upper critical loads and mild wear in between the two critical loads. The increase in density of the monolith and the reinforcement of TiB2 were effective in reducing the coefficient of friction and the specific wear rate. The wear experiments have been performed in these three regimes (15, 50 and 75 N). The tribofilm formed on the pin surface was found to contain both pin and disc materials. The temperature of the pins during the sliding against EN-24 disc was calculated using one dimensional heat transfer equation at different loads for each composition. The composite experiences lower temperatures compared to the monoliths. (C) 2002 Elsevier Science B.V. All rights reserved.
Crystallization of SrCO3 on a self-assembled monolayer substrate: an in-situ synchrotron X-ray study
Resumo:
Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces show great promise in controlling the nucleation and growth of inorganic minerals from solution. In doing so, they mimic the role of some biogenic macromolecules in natural biomineralisation processes. Crystallization on SAM surfaces is usually monitored ex-situ; by allowing the process to commence and to evolve for some time, removing the substrate from the mother solution, and then examining it using microscopy, diffraction etc. We present here for the first time, the use of high energy monochromatic synchrotron X-radiation in conjunction with a two dimensional detector to monitor in situ, in a time resolved fashion, the growth of SrCO3 (strontianite) crystals on a SAM substrate.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.
Resumo:
Reduced graphene oxide-lead dioxide composite is formed when EGO coated surface is electrochemically reduced along with lead ions in the solution. This composite has been shown to be an excellent material for low level detection of arsenic. Various functional groups present on EGO, in a wide pH range of 2-11, are responsible for the favorable interaction between metal ion and the modified electrode surface and subsequent trace level detection. X-ray photoelectron spectroscopy and Raman spectroscopic techniques confirm the formation of composite and its composition. Thin layer of lead dioxide along with reduced exfoliated graphene oxide has been shown to be responsible for the enhanced activity of the surface. The detection limit of arsenic is found to be 10 nM. This study opens up the possibility of using the composites for sensing applications and possibly simultaneous detection of arsenic and lead. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
In situ electrochemical polymerization of aniline in a Langmuir trough under applied surface pressure assists in the preferential orientation of polyaniline (PANI) in planar polaronic structure. Exfoliated graphene oxide (EGO) spread on water surface is used to bring anilinium cations present in the subphase to air-water interface through electrostatic interactions. Subsequent electrochemical polymerization of aniline under applied surface pressure in the Schaefer mode results in EGO/PANT composite with PANT in planar polaronic form. The orientation of PANI is confirmed by electrochemical and Raman spectroscopic studies. This technique opens up possibilities of 2-D polymerization at the air-water interface. Electrochemical sensing of hydrogen peroxide is used to differentiate the activity of planar and coiled forms of PANI toward electrocatalytic reactions.
Resumo:
In situ powder X-ray diffraction (XRD) studies on 3D micro-crystalline tin (II) sulfide (SnS) were carried out at different temperatures. While increasing temperature, the crystal structure of SnS remains stable as orthorhombic, whereas its lattice parameters and unit-cell volume are considerably varied. Further, these 3D micro-crystalline structures have showed a negative thermal expansion along the a-axis and positive expansion along the b- and c-axes. However, the overall drop along the a-axis of SnS crystals is nearly equal to their expansion along the c-axis. The observed changes in the structural properties of SnS micro-crystallites with temperature are discussed and reported.
Resumo:
A novel, user-friendly, and convenient method for the synthesis of trisubstituted thioureas of arylamines is presented, for the first time, using in situ generated dithiocarbamates of secondary amines. This strategy provides an excellent opportunity to access thioureas containing primary aryl amines. A non-isothiocyanate route to obtain thioureas is the advantage of this strategy, which may provide a useful route to synthesize a variety of biologically active derivatives of thioureas.
Resumo:
The sliding history in friction-induced material transfer of dry 2H-MoS2 particles in a sheared contact was studied. Video images in contact showed fragmentation of lubricant particles and build-up of a transfer film, and were used to measure the speed of fragmented particles in the contact region. Total internal reflection (TIR) Raman spectroscopy was used to follow the build-up of the MoS2 transfer film. A combination of in situ and ex situ analysis of the mating bodies revealed the thickness of the transfer film at steady state to be of the order of 35 nm on the ball surface and 15 nm on the flat substrate. Insights into the mechanism of formation of the transfer film in the early stages of sliding contact are deduced.
Resumo:
A new class of steroid dimers (bile acid derivatives) linked through ester functionalities were synthesized, which gelled various aromatic solvents. The organogels formed by the three dimeric ester molecules showed birefringent textures and fibrous nature by polarizing optical microscopy and scanning electron microscopy, respectively. A detailed rheological study was performed to estimate the mechanical strengths of two sets of organogels. In these systems, the storage modulus varied in the range of 0.8-3.5 X 10(4) at 1% w/v of the organogelators. The exponents of scaling of the storage modulus and yield stress of the two systems agreed well with those expected for viscoelastic soft colloidal gels with fibrillar flocs. The nanofibers in the organogel were utilized to engineer gold nanoparticles of different sizes and shapes and generate new gel-nanoparticle hybrid materials.
Resumo:
In-situ impedance spectroscopy of layer-by-layer self-assembly of weak polyelectrolytes is presented. Interdigitated capacitors with active area of 1×1 mm2 and electrode spacing of 5 μm are fabricated and used for this purpose. Measurement results indicate that the impedance decreases with increase in number of polyelectrolyte layers. About 2.5% of relative change in magnitude of impedance at 104.7 KHz is seen for four bi-layers of Poly(Allylamine Hydrochloride) (PAH)/Poly(Acrylic acid) (PAA). An electrical equivalent for polyelectrolyte binding is obtained.