37 resultados para hydrocarbon reservoir


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthquakes triggered by artificial reservoirs have been documented for more than seven decades and the processes leading to this phenomenon are fairly well understood. Larger among such earthquakes are known to occur within a few years of reservoir impoundment and usually the activity decreases with time. A documented example of Reservoir Triggered Seismicity (RTS), the Idukki Reservoir in Kerala, south India, impounded in 1975, is an exception wherein the triggered activity has been revived in 2011, nearly 35 years after the initial burst of activity in 1977, two years after the dam was filled. The magnitude of the largest shock in the 2011 sequence exceeded that of the previously documented largest microearthquake. Presence of faults that are close to failure and vulnerable to increase in pore pressure due to reservoir loading or increased rainfall, or a combination of both seems to trigger shocks in this area. The renewed burst of earthquakes after a prolonged period of reduced activity at the Idukki Reservoir is a rare example of RTS. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integratedm odel is developed,b asedo n seasonailn puts of reservoiri nflow and rainfall in the irrigated area, to determine the optimal reservoir release policies and irrigation allocationst o multiple crops.T he model is conceptuallym ade up of two modules. Module 1 is an intraseasonal allocation model to maximize the sum of relative yieldso f all crops,f or a givens tateo f the systemu, singl inear programming(L P). The module takes into account reservoir storage continuity, soil moisture balance, and crop root growthw ith time. Module 2 is a seasonaal llocationm odel to derive the steadys tate reservoiro peratingp olicyu sings tochastidc ynamicp rogramming(S DP). Reservoir storage, seasonal inflow, and seasonal rainfall are the state variables in the SDP. The objective in SDP is to maximize the expected sum of relative yields of all crops in a year.The resultso f module 1 and the transitionp robabilitieso f seasonailn flow and rainfall form the input for module 2. The use of seasonailn puts coupledw ith the LP-SDP solution strategy in the present formulation facilitates in relaxing the limitations of an earlier study,w hile affectinga dditionali mprovementsT. he model is applied to an existing reservoir in Karnataka State, India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex pheromones are vital in communication between individuals belonging to opposite sexes and form an integral part of the reproductive biology of various species. Among insects, sexual dimorphism in CHCs has been reported from diverse taxa spanning seven different orders, and thereby CHCs have been implicated as sex pheromones. Because males and females of the primitively eusocial wasp Ropalidia marginata touch each other with their antennae during mating, before engaging in sperm transfer, a sex pheromone that is perceived via contact chemosensation through the antennae can possibly exist in this species. Since CHCs have been implied as sex pheromones in various insects (including hymenopterans), and since sexual dimorphism of CHCs should be an obligatory prerequisite for them to act as sex pheromones, we investigated whether males and females of R. marginata differ in their CHC profiles. We found only nonvolatile CHCs, and our results show absence of sexual dimorphism in CHCs, suggesting that CHCs do not function as sex pheromone in this species. A behavioral assay failed to show presence of mate attraction at a distance, thereby showing the absence of volatile long-distance mate attraction cues (that may originate from sources other than and in addition to CHCs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development and application of a stochastic dynamic programming model with fuzzy state variables for irrigation of multiple crops. A fuzzy stochastic dynamic programming (FSDP) model is developed in which the reservoir storage and soil moisture of the crops are considered as fuzzy numbers, and the reservoir inflow is considered as a stochastic variable. The model is formulated with an objective of minimizing crop yield deficits, resulting in optimal water allocations to the crops by maintaining storage continuity and soil moisture balance. The standard fuzzy arithmetic method is used to solve all arithmetic equations with fuzzy numbers, and the fuzzy ranking method is used to compare two or more fuzzy numbers. The reservoir operation model is integrated with a daily-based water allocation model, which results in daily temporal variations of allocated water, soil moisture, and crop deficits. A case study of an existing Bhadra reservoir in Karnataka, India, is chosen for the model application. The FSDP is a more realistic model because it considers the uncertainty in discretization of state variables. The results obtained using the FSDP model are found to be more acceptable for the case study than those of the classical stochastic dynamic model and the standard operating model, in terms of 10-day releases from the reservoir and evapotranspiration deficit. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short-term real-time operation model with fuzzy state variables is developed for irrigation of multiple crops based on earlier work on long-term steady-state policy. The features of the model that distinguish it from the earlier work are (1) apart from inclusion of fuzziness in reservoir storage and in soil moisture of crops, spatial variations in rainfall and soil moisture of crops are included in the real-time operation model by considering gridded command area with a grid size of 0.5 degrees latitude by 0.5 degrees longitude; (2) the water allocation model and soil moisture balance equations are integrated with the real-time operation model with consideration of ponding water depth for Paddy crop; the model solution specifies reservoir releases for irrigation in a 10-day time period and allocations among the crops on a daily basis at each grid by maintaining soil moisture balance at the end of the day; and (3) the release policy is developed using forecasted daily rainfall data of each grid and is implemented for the current time period using actual 10-day inflow and actual daily rainfall of each grid. The real-time operation model is applied to Bhadra Reservoir in Karnataka, India. The results obtained using the real-time operation model are compared with those of the standard operating policy model. Inclusion of fuzziness in reservoir storage and soil moisture of crops captures hydrologic uncertainties in real time. Considerations of irrigation decisions on a daily basis and the gridded command area result in variations in allocating water to the crops, variations in actual crop evapotranspiration, and variations in soil moisture of the crops on a daily basis for each grid of the command area. (C) 2015 American Society of Civil Engineers.