112 resultados para harmonic approximation
Resumo:
In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.
Resumo:
Normal coordinate analysis of a molecule of the type XY7 (point group D5h) has been carried out using Wilson's FG, matrix method and the results have been utilized to calculate the force constants of IF7 from the available Raman and infrared data. Some of the assignments made previously by Lord and others have been revised and with the revised assignments the thermodynamic quantities of IF7 have been computed from 300°K to 1000°K under rigid rotator and harmonic oscillator approximation.
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
We recently introduced the dynamical cluster approximation (DCA), a technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean-field approximation while preserving causality. The technique is based on an iterative self-consistency scheme on a finite-size periodic cluster. The dynamical mean-field approximation (exact result) is obtained by taking the cluster to a single site (the thermodynamic limit). Here, we provide details of our method, explicitly show that it is causal, systematic, Phi derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by applying it to a quantum Monte Carlo and exact enumeration study of the two-dimensional Falicov-Kimball model. The resulting spectral functions preserve causality, and the spectra and the charge-density-wave transition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.
Resumo:
An identity expressing formally the diagonal and off-diagonal elements of an inverse of a matrix is deduced employing operator techniques. Several well-known perturbation expressions for the self-energy are deduced as special cases. A new approximation and other applications following from the above formalism are briefly indicated through illustrations from a perturbed harmonic oscillator, chemisorption approximations and Kelly's result in the problem of electron correlation.
Resumo:
Effective usage of image guidance by incorporating the refractive index (RI) variation in computational modeling of light propagation in tissue is investigated to assess its impact on optical-property estimation. With the aid of realistic patient breast three-dimensional models, the variation in RI for different regions of tissue under investigation is shown to influence the estimation of optical properties in image-guided diffuse optical tomography (IG-DOT) using numerical simulations. It is also shown that by assuming identical RI for all regions of tissue would lead to erroneous estimation of optical properties. The a priori knowledge of the RI for the segmented regions of tissue in IG-DOT, which is difficult to obtain for the in vivo cases, leads to more accurate estimates of optical properties. Even inclusion of approximated RI values, obtained from the literature, for the regions of tissue resulted in better estimates of optical properties, with values comparable to that of having the correct knowledge of RI for different regions of tissue.
Resumo:
We report the absorption spectra, oscillator strengths, ground state and excited state dipole moments, and molecular second order polarizability coefficients (βCT) due to donor—acceptor charge transfer in four trisubstituted ethylenes, namely 1,1-bisdimethylamino-2-nitroethylene, 1,1-bispyrolidino-2-nitroethylene, 1,1-bispiperidino-2-nitroethylene and 1,1-bismorpholino-2-nitroethylene. The results are compared with that of trans-N,N-dimethylamino-nitroethylene, which has a large βCT. The powder second harmonic generation (SHG) intensity of all these molecules is also measured and only 1,1-bispiperidino-2-nitroethylene is found to possess an efficiency of 20% of that of urea under the same conditions. The SHG efficiency of this compound and deficiency in the other molecules in the powdered state is discussed in terms of their arrangements in the unit cell. The crystal structure of the active molecule is also presented and the structure—property relationship is critically examined in all these molecules.
Resumo:
We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]
Resumo:
Time-dependent models of collisionless stellar systems with harmonic potentials allowing for an essentially exact analytic description have recently been described. These include oscillating spheres and spheroids. This paper extends the analysis to time-dependent elliptic discs. Although restricted to two space dimensions, the systems are richer in that their parameters form a 10-dimensional phase space (in contrast to six for the earlier models). Apart from total energy and angular momentum, two additional conserved quantities emerge naturally. These can be chosen as the areas of extremal sections of the ellipsoidal region of phase space occupied by the system (their product gives the conserved volume). The present paper describes the construction of these models. An application to a tidal encounter is given which allows one to go beyond the impulse approximation and demonstrates the effects of rotation of the perturbed system on energy and angular-momentum transfer. The angular-momentum transfer is shown to scale inversely as the cube of the encounter velocity for an initial configuration of the perturbed galaxy with zero quadrupole moment.