42 resultados para hCG
Resumo:
Depletion of calcium in the extracellular medium used to incubate first trimester human placental minces resulted in a significant decrease in the quantity of immuno-reactive hCG in the medium and a corresponding increase in the tissue. In contrast, when secretion of newly synthesised hCG was monitored in the absence of calcium by using a radioactive amino acid precursor, a significant increase in the secretion of newly synthesised hCG in the medium was noticed. This was true of secretion of other proteins also as evidenced by the increase in the trichloroacetic acid precipitable radioactivity in the medium in the absence of calcium. These results suggest that newly synthesised hCG is preferentially released over stored hormone in the absence of calcium.
Resumo:
Inhibition of aromatase, a key enzyme in the biosynthesis of oestradiol-17 beta, by the addition of 1,4,6-androstatrien-3,17-dione resulted in a significant increase in the levels of immunoreactive human chorionic gonadotrophin (hCG) in the medium and tissue. This increase was partially reversed by the simultaneous addition of oestradiol-17 beta. These effects on the levels of immunoreactive hCG were also reflected by the increased levels of mRNA specific for the alpha and beta subunits of hCG following the addition of the aromatase inhibitor. However, addition of tamoxifen resulted in a drastic decrease in the levels of both the messages. Based on these results, it is suggested that the synthesis of hCG is negatively modulated by oestradiol-17 beta in the human placenta.
Resumo:
While the endocrine role of oestrogen is well established, its function in follicular maturation as an autocrine or paracrine regulator is less well understood. This study was designed to delineate the requirement of oestrogen for follicular development in immature rats. Exogenous gonadotrophin (25 IU pregnant mare serum gonadotrophin (PMSG) per rat) was administered to 21- to 23-day old female rats to induce follicular growth and development. In the experimental animals, synthesis of oestrogen was blocked by implanting an Alzet pump containing the aromatase inhibitor (AI) CGS 16949A (fadrozole hydrochloride; 50 mu g/rat per day). The treatment resulted in blockade of the PMSG induced increase in both serum and intrafollicular oestrogen (>95%), thus leading to an inhibition in uterine weight increment. Compared with the controls, ovarian weight increased markedly in both the PMSG (295%)- and PMSG+AI (216%)-primed animals. There was no significant difference in either the proliferative capabilities of the ovarian granulosa cells or their responsiveness to human chorionic gonadotrophin (hCG; 200 pg/ml) and ovine FSH (20 ng/ml) between the PMSG- and PMSG+AI-treated groups. Histological examination of the ovary, however, indicated a decrease in the number of healthy antral follicles in the Al-treated group compared with the PMSG-primed animals but both the groups showed a percentage increase over the controls (PMSG, 225; PMSG+AI, 158). The responsiveness of the animals to an ovulatory dose of hCG was drastically reduced (>80% inhibition of ovulation) in the oestrogen-deprived animals; this could be overriden by exogenous administration of oestrogen. In conclusion, although blocking oestrogen synthesis in the PMSG-primed rat does not seem to alter the functional properties of the isolated granulosa cells in vitro there appears to be an effect on the number of follicles which complete maturation and are able to ovulate in vivo.
Resumo:
Although a distinct need for FSH in the regulation of follicular maturation in the primate is well recognized, it is not clear how FSH controls the functionality of different cellular compartments of the follicle. It is also not evident whether there is a requirement for LH in follicular maturation in the primate. In the first part of the present study, female bonnet monkeys were administered a well-characterized ovine (o) LH antiserum to neutralize endogenous monkey LH for different periods during the follicular phase, and the effect on the overall follicular maturation process was assessed by analyzing serum estrogen (E) and progesterone (P) profiles. Neither continuous LH deprivation from Day 8 of the cycle nor deprivation of LH on any one day between Days 6 and 10 had a significant effect on serum E and P profiles and the follicular maturation process. The period for which the antiserum was effective was dependent upon the dose injected; 1 ml of the antiserum given on Day 8 blocked ovulation but not follicular maturation. To assess the effect of deprivation of LH/FSH at the cellular level, animals were deprived in vivo of LH (on Days 8 and 9 of the cycle) or of FSH (on Day 6 of the cycle) by injection of highly characterized hCG and ovine (o) FSH antisera, respectively; the in vitro responsiveness of granulosa and thecal cells isolated on Day 10 from these animals was then determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Monoclonal antibodies (MAbs) have been used extensively for identification of sequence-specific epitopes using either the ELISA or/and IRMA methods, However, attempts to use MAbs for identification of conformation-specific epitopes have been very few as they are considered very labile. We have investigated the stability of conformation-specific epitopes of human chorionic gonadotropin (hCG) using a quantitative solid-phase radioimmnunoassay (SPRIA) technique. Several epitopes are stable to mild modification (chemical and proteolytic) conditions, and epitopes show differential stability for these modifications. Based on these observations, a monoclonal antibody (MAb 16) for an a-subunit-specific epitope of hCG has been used to monitor changes at the epitopic site (identified as epitope 16) on modification of hCG, using SPRIA with immobilized MAb 16. Modifications of amino groups, hydroxyl group of tyrosine as well as carboxyl group of Asp/Glu all bring about sufficient changes in the epitope integrity. Peptide bond hydrolysis at lysine residues damages the epitope, but not at arginine residues, Hydrolysis at tyrosine does not affect the epitope, though modification of the side-chain of tyrosine inactivates the epitope. Destruction of the epitope occurs on reduction of the disulphide bonds. Partial retention of the epitope activity is seen on modification of carboxyl or the epsilon-amino groups of lysine. Based on these results four to six amino acids have been identified to be at the epitopic site, and the data suggest that two peptide segments are brought together by the disulphide bond Cys10-Cys60 to form the epitope.
Resumo:
Identification of conformation-specific epitopes of hCG beta has been done using a simple batch method, Chemically or enzymatically-modified hCG beta has been prepared in a batch and the effect of modifications on the integrity of different epitope regions has been investigated in a quantitative manner using monoclonal antibodies (MAbs) immobilized on plastic tubes from culture supernatants. Based on the extent of damage done to different regions by different modifications, three conformation-specific epitopes of hCG beta have been identified. The method has been shown to have important advantages over the existing methods on many considerations, Using this approach, these epitopes have been shown to be at/near the receptor-binding region.
Resumo:
A single step solid phase radioimmunoassay (SS-SPRIA) has been developed for human chorionic,gonadotropin (hCG) using monoclonal antibodies (MAb) from culture media adsorbed immunochemically on plastic tubes. The assays have been found to be very simple in terms of operation and do not demand purification of MAbs. Several MAbs which do not show any displacement in liquid phase RIA and ELISA provide a satisfactory SS-SPRIA. Our investigations revealed that the assumption regarding the stability of the primary Mab-Ag complex during incubation and washing steps in ELISAs is not strictly valid for dissociable MAbs. A comparison of different assay systems suggests that the single step SPRIA offers additional advantages over conventionally used multistep ELISA procedures and provides a quantitative probe for the analysis of epitope-paratope interactions.
Resumo:
The specific role of oestrogen in follicular maturation, ovulation and early embryonic development was investigated using Fadrozole (CGS 16949A), a non-steroidal aromatase inhibitor, to block oestrogen synthesis specifically and effectively in experimental animals. Induced and normal cyclical follicular maturation as well as normal and hCG/LH-induced ovulation were relatively unaffected by significantly depleting oestrogen in all animals (hamsters, rabbits, monkeys) studied other than rats. Fadrozole treatment significantly reduced the number of healthy antral follicles produced and the ovulatory response to exogenous hCG of immature rats primed with pregnant mares' serum gonadotrophin. The effect was specific, in that exogenously administered oestrogen reversed the blockade. Depletion of oestrogen, starting early in pro-oestrus in hamsters, had no effect on ovulation, oocyte maturation and fertilization, as normal implantation sites were seen on day 6 after coitus. In rabbits, oestrogen depletion during the periovulatory phase affected oviductal morphology and function. Although fertilization was not impaired, early embryo development did not appear to be normal. In monkeys, oestrogen depletion during the follicular phase did not lead to a block of follicular maturation or ovulation but resulted in a significant reduction in secretion of cervical mucus. Administration of either Fadrozole or Tamoxifen during the early luteal phase in cyclic monkeys that were allowed to mate prevented implantation and this appears to be due to impaired fertilization or faulty embryo development. These results suggest that, although there is a clear requirement for oestrogen to support the reproductive cycle in the female, the need for oestrogen in regulating specific events is species dependent.
Resumo:
Time course of release of immunoreactive hCG to a placental incubation in the medium revealed a steady increase over a period of 4 hours. However, levels in the tissue, showed an increase at 10' and 60' after an initial decrease. Studies using A23187 which stimulated hCG secretion also revealed a net increase in the quantity of hCG in the tissue. These results sugest that the secretion of hCG acts as a stimulus for fresh synthesis of hCG.
Resumo:
Background: In higher primates, during non-pregnant cycles, it is indisputable that circulating LH is essential for maintenance of corpus luteum (CL) function. On the other hand, during pregnancy, CL function gets rescued by the LH analogue, chorionic gonadotropin (CG). The molecular mechanisms involved in the control of luteal function during spontaneous luteolysis and rescue processes are not completely understood. Emerging evidence suggests that LH/CGR activation triggers proliferation and transformation of target cells by various signaling molecules as evident from studies demonstrating participation of Src family of tyrosine kinases (SFKs) and MAP kinases in hCG-mediated actions in Leydig cells. Since circulating LH concentration does not vary during luteal regression, it was hypothesized that decreased responsiveness of luteal cells to LH might occur due to changes in LH/CGR expression dynamics, modulation of SFKs or interference with steroid biosynthesis. Methods: Since, maintenance of structure and function of CL is dependent on the presence of functional LH/CGR its expression dynamics as well as mRNA and protein expressions of SFKs were determined throughout the luteal phase. Employing well characterized luteolysis and CL rescue animal models, activities of SFKs, cAMP phosphodiesterase (cAMP-PDE) and expression of SR-B1 (a membrane receptor associated with trafficking of cholesterol ester) were examined. Also, studies were carried out to investigate the mechanisms responsible for decline in progesterone biosynthesis in CL during the latter part of the non-pregnant cycle. Results and discussion: The decreased responsiveness of CL to LH during late luteal phase could not be accounted for by changes in LH/CGR mRNA levels, its transcript variants or protein. Results obtained employing model systems depicting different functional states of CL revealed increased activity of SFKs pSrc (Y-416)] and PDE as well as decreased expression of SR-B1correlating with initiation of spontaneous luteolysis. However, CG, by virtue of its heroic efforts, perhaps by inhibition of SFKs and PDE activation, prevents CL from undergoing regression during pregnancy. Conclusions: The results indicated participation of activated Src and increased activity of cAMP-PDE in the control of luteal function in vivo. That the exogenous hCG treatment caused decreased activation of Src and cAMP-PDE activity with increased circulating progesterone might explain the transient CL rescue that occurs during early pregnancy.
Resumo:
Studies on functional characteristics of the regressing primate corpus luteum (CL) to luteotrophic stimulus on day 1 of the non-fertile menstrual cycle are scarce. Recombinant human luteinizing hormone (rhLH) (20 IU/Kg BW; n = 10) or human chorionic gonadotropin (hCG) (180 IU; n = 6) were administered intravenously to female bonnet monkeys on day 1 of menses. Exogenous treatment of rhLH or hCG caused a significant increase in circulating progesterone (P4) levels 2-4 hours post treatment (P < 0.05). Lutectomy prior to onset of menses confirmed that CL is the site of the increased P4 concentrations. Increased levels of phosphorylated P44/42 MAPK, MKK3/6 activation and concomitant histological changes were observed within 4 hours in CL of monkeys receiving hCG treatment. The results from this study demonstrate the acute progesterone synthesizing capacity of regressing monkey CL after LH or hCG challenge. This has potential implications for interpreting the steroidogenic response after gonadotropin stimulation tests in the early follicular phase of the normal ovulatory and anovulatory women undergoing controlled ovarian stimulation protocols as part of assisted reproductive technology (ART) and in women with polycystic ovarian syndrome.
Resumo:
The rapid recent increase in microarray-based gene expression studies in the corpus luteum (CL) utilizing macaque models gathered increasing volume of data in publically accessible microarray expression databases. Examining gene pathways in different functional states of CL may help to understand the factors that control luteal function and hence human fertility. Co-regulation of genes in microarray experiments may imply common transcriptional regulation by sequence-specific DNA-binding transcriptional factors. We have computationally analyzed the transcription factor binding sites (TFBS) in a previously reported macaque luteal microarray gene set (n = 15) that are common targets of luteotropin (luteinizing hormone (LH) and human chorionic gonadotropin (hCG)) and luteolysin (prostaglandin (PG) F-2 alpha). This in silico approach can reveal transcriptional networks that control these important genes which are representative of the interplay between luteotropic and luteolytic factors in the control of luteal function. Our computational analyses revealed 6 matrix families whose binding sites are significantly over-represented in promoters of these genes. The roles of these factors are discussed, which might help to understand the transcriptional regulatory network in the control of luteal function. These factors might be promising experimental targets for investigation of human luteal insufficiency. (C) 2012 Elsevier B.V. All rights reserved.