152 resultados para genetic load


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of reinforced concrete slabs fixed at the boundaries, considerable enhancement in the load carrying capacity takes place due to compressive membrane action. In this paper a method is presented to analyse the effects of membrane action in fixed orthotropic circular slabs, carrying uniformly distributed loads. Depending on the radial moment capacity being greater or less than the circumferential moment capacity, two cases of orthotropy have been considered. Numerical results are worked out for certain assumed physical parameters and for different coefficients of orthotropy. Variations of load and bending moments with the central deflection are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented for determining the complete load-deflection behavior of reinforced concrete skew slabs restrained at the edges and subjected to uniformly-distributed loading. The analysis is considered in three stages. In the first stage the load-deflection behavior up to the cracking load is considered. The behavior between the cracking load and the yield line load is considered in the second stage. The load-deflection behavior beyond the yield line load, taking into account the effect of the membrane action, is considered in the third stage. Details of an experimental program of casting and testing 12 reinforced concrete skew slabs restrained at the edges are presented to verify the results of the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate—“plastic”—loci, where a plastic locus had a finite probability in each generation of functioning (being switched “on”) or not functioning (being switched “off”). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the beta transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the beta transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between Prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is the N terminal region of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature-sensitive prp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperature-sensitive (ts) prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic to prp21-1. This suppressor, prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that of prp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in the prp24-1 strain. Genetic analysis of the suppressor showed that prp21-2 is not a bypass suppressor of prp24-1. The suppression of prp24-1 by prp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2-U6 snRNA interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy Waste Load Allocation Model (FWLAM), developed in an earlier study, derives the optimal fractional levels, for the base flow conditions, considering the goals of the Pollution Control Agency (PCA) and dischargers. The Modified Fuzzy Waste Load Allocation Model (MFWLAM) developed subsequently is a stochastic model and considers the moments (mean, variance and skewness) of water quality indicators, incorporating uncertainty due to randomness of input variables along with uncertainty due to imprecision. The risk of low water quality is reduced significantly by using this modified model, but inclusion of new constraints leads to a low value of acceptability level, A, interpreted as the maximized minimum satisfaction in the system. To improve this value, a new model, which is a combination Of FWLAM and MFWLAM, is presented, allowing for some violations in the constraints of MFWLAM. This combined model is a multiobjective optimization model having the objectives, maximization of acceptability level and minimization of violation of constraints. Fuzzy multiobjective programming, goal programming and fuzzy goal programming are used to find the solutions. For the optimization model, Probabilistic Global Search Lausanne (PGSL) is used as a nonlinear optimization tool. The methodology is applied to a case study of the Tunga-Bhadra river system in south India. The model results in a compromised solution of a higher value of acceptability level as compared to MFWLAM, with a satisfactory value of risk. Thus the goal of risk minimization is achieved with a comparatively better value of acceptability level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of Genetic Programming (GP) to create an approximate model for the non-linear relationship between flexural stiffness, length, mass per unit length and rotation speed associated with rotating beams and their natural frequencies. GP, a relatively new form of artificial intelligence, is derived from the Darwinian concept of evolution and genetics and it creates computer programs to solve problems by manipulating their tree structures. GP predicts the size and structural complexity of the empirical model by minimizing the mean square error at the specified points of input-output relationship dataset. This dataset is generated using a finite element model. The validity of the GP-generated model is tested by comparing the natural frequencies at training and at additional input data points. It is found that by using a non-dimensional stiffness, it is possible to get simple and accurate function approximation for the natural frequency. This function approximation model is then used to study the relationships between natural frequency and various influencing parameters for uniform and tapered beams. The relations obtained with GP model agree well with FEM results and can be used for preliminary design and structural optimization studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. Methods: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. Results: The three polymorphisms, namely -3826A -> G, an A -> C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A -> G-5'UTR A -> C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). Conclusions: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).