68 resultados para fuzzy SVM
Resumo:
Advertisements(Ads) are the main revenue earner for Television (TV) broadcasters. As TV reaches a large audience, it acts as the best media for advertisements of products and services. With the emergence of digital TV, it is important for the broadcasters to provide an intelligent service according to the various dimensions like program features, ad features, viewers’ interest and sponsors’ preference. We present an automatic ad recommendation algorithm that selects a set of ads by considering these dimensions and semantically match them with programs. Features of the ad video are captured interms of annotations and they are grouped into number of predefined semantic categories by using a categorization technique. Fuzzy categorical data clustering technique is applied on categorized data for selecting better suited ads for a particular program. Since the same ad can be recommended for more than one program depending upon multiple parameters, fuzzy clustering acts as the best suited method for ad recommendation. The relative fuzzy score called “degree of membership” calculated for each ad indicates the membership of a particular ad to different program clusters. Subjective evaluation of the algorithm is done by 10 different people and rated with a high success score.
Resumo:
Fuzzy multiobjective programming for a deterministic case involves maximizing the minimum goal satisfaction level among conflicting goals of different stakeholders using Max-min approach. Uncertainty due to randomness in a fuzzy multiobjective programming may be addressed by modifying the constraints using probabilistic inequality (e.g., Chebyshev’s inequality) or by addition of new constraints using statistical moments (e.g., skewness). Such modifications may result in the reduction of the optimal value of the system performance. In the present study, a methodology is developed to allow some violation in the newly added and modified constraints, and then minimizing the violation of those constraints with the objective of maximizing the minimum goal satisfaction level. Fuzzy goal programming is used to solve the multiobjective model. The proposed methodology is demonstrated with an application in the field of Waste Load Allocation (WLA) in a river system.
Resumo:
Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.
Resumo:
A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.
Resumo:
The following topics were dealt with: document analysis and recognition; multimedia document processing; character recognition; document image processing; cheque processing; form processing; music processing; document segmentation; electronic documents; character classification; handwritten character recognition; information retrieval; postal automation; font recognition; Indian language OCR; handwriting recognition; performance evaluation; graphics recognition; oriental character recognition; and word recognition
Resumo:
This paper addresses the problem of curtailing the number of control actions using fuzzy expert approach for voltage/reactive power dispatch. It presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage profile of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed Fuzzy Logic Control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and modified IEEE-30 bus system. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a modified IEEE-30 bus test system and a 205-node equivalent EHV system a part of Indian southern grid are presented for illustration purposes. The proposed fuzzy-expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups with few number of controllers.
Resumo:
The generalization performance of the SVM classifier depends mainly on the VC dimension and the dimensionality of the data. By reducing the VC dimension of the SVM classifier, its generalization performance is expected to increase. In the present paper, we argue that the VC dimension of SVM classifier can be reduced by applying bootstrapping and dimensionality reduction techniques. Experimental results showed that bootstrapping the original data and bootstrapping the projected (dimensionally reduced) data improved the performance of the SVM classifier.
Resumo:
In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.