115 resultados para frequency domain phase conjugation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a cooperative particle swarm optimization (CPSO) based channel estimation/equalization scheme for multiple-input multiple-output zero-padded single-carrier (MIMO-ZPSC) systems with large dimensions in frequency selective channels. We estimate the channel state information at the receiver in time domain using a PSO based algorithm during training phase. Using the estimated channel, we perform information symbol detection in the frequency domain using FFT based processing. For this detection, we use a low complexity OLA (OverLap Add) likelihood ascent search equalizer which uses minimum mean square (MMSE) equalizer solution as the initial solution. Multiple iterations between channel estimation and data detection are carried out which significantly improves the mean square error and bit error rate performance of the receiver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasigeostrophic turbulence on a beta-plane with a finite deformation radius is studied numerically, with particular emphasis on frequency and combined wavenumber-frequency domain analyses. Under suitable conditions, simulations with small-scale random forcing and large-scale drag exhibit a spontaneous formation of multiple zonal jets. The first hint of wave-like features is seen in the distribution of kinetic energy as a function of frequency; specifically, for progressively larger deformation scales, there are systematic departures in the form of isolated peaks (at progressively higher frequencies) from a power-law scaling. Concomitantly, there is an inverse flux of kinetic energy in frequency space which extends to lower frequencies for smaller deformation scales. The identification of these peaks as Rossby waves is made possible by examining the energy spectrum in frequency-zonal wavenumber and frequency-meridional wavenumber diagrams. In fact, the modified Rhines scale turns out to be a useful measure of the dominant meridional wavenumber of the modulating Rossby waves; once this is fixed, apart from a spectral peak at the origin (the steady jet), almost all the energy is contained in westward propagating disturbances that follow the theoretical Rossby dispersion relation. Quite consistently, noting that the zonal scale of the modulating waves is restricted to the first few wavenumbers, the energy spectrum is almost entirely contained within the corresponding Rossby dispersion curves on a frequency-meridional wavenumber diagram. Cases when jets do not form are also considered; once again, there is a hint of Rossby wave activity, though the spectral peaks are quite muted. Further, the kinetic energy scaling in frequency domain follows a -5/3 power-law and is distributed much more broadly in frequency-wavenumber diagrams. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An input-output, frequency-domain characterization of decentralized fixed modes is given in this paper, using only standard block-diagram algebra, well-known determinantal expansions and the Binet-Cauchy formula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The positivity of operators in Hilbert spaces is an important concept finding wide application in various branches of Mathematical System Theory. A frequency- domain condition that ensures the positivity of time-varying operators in L2 with a state-space description, is derived in this paper by using certain newly developed inequalities concerning the input-state relation of such operators. As an interesting application of these results, an L2 stability criterion for time-varying feedback systems consisting of a finite-sector non-linearity is also developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reliable protection against direct lightning hit is very essential for satellite launch pads. In view of this, suitable protection systems are generally employed. The evaluation of efficacy of the lightning protection schemes among others requires an accurate knowledge of the consequential potential rise at the struck point and the current injected into soil at the earth termination. The present work has made a detailed effort to deduce these quantities for the lightning protection scheme of the Indian satellite launch pad-I. A reduced scale model of the system with a frequency domain approach is employed for the experimental study. For further validation of the experimental approach, numerical simulations using numerical electromagnetic code-2 are also carried out on schemes involving single tower. The study results on the protection system show that the present design is quite safe with regard to top potential rise. It is shown that by connecting ground wires to the tower, its base current and, hence, the soil potential rise can be reduced. An evaluation of an alternate design philosophy involving insulated mast scheme is also made. The potential rise in that design is quantified and the possibility of a flashover to supporting tower is briefly looked into. The supporting tower is shown to have significant induced currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sufficient conditions are given for the L2-stability of a class of feedback systems consisting of a linear operator G and a nonlinear gain function, either odd monotone or restricted by a power-law, in cascade, in a negative feedback loop. The criterion takes the form of a frequency-domain inequality, Re[1 + Z(jω)] G(jω) δ > 0 ω ε (−∞, +∞), where Z(jω) is given by, Z(jω) = β[Y1(jω) + Y2(jω)] + (1 − β)[Y3(jω) − Y3(−jω)], with 0 β 1 and the functions y1(·), y2(·) and y3(·) satisfying the time-domain inequalities, ∝−∞+∞¦y1(t) + y2(t)¦ dt 1 − ε, y1(·) = 0, t < 0, y2(·) = 0, t > 0 and ε > 0, and , c2 being a constant depending on the order of the power-law restricting the nonlinear function. The criterion is derived using Zames' passive operator theory and is shown to be more general than the existing criteria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually digital image forgeries are created by copy-pasting a portion of an image onto some other image. While doing so, it is often necessary to resize the pasted portion of the image to suit the sampling grid of the host image. The resampling operation changes certain characteristics of the pasted portion, which when detected serves as a clue of tampering. In this paper, we present deterministic techniques to detect resampling, and localize the portion of the image that has been tampered with. Two of the techniques are in pixel domain and two others in frequency domain. We study the efficacy of our techniques against JPEG compression and subsequent resampling of the entire tampered image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of detecting an unknown transient signal in noise is considered. The SNR of the observed data is first enhanced using wavelet domain filter The output of the wavelet domain filter is then transformed using a Wigner-Ville transform,which separates the spectrum of the observed signal into narrow frequency bands. Each subband signal at the output of the Wigner-ville block is subjected kto wavelet based level dependent denoising (WBLDD)to supress colored noise A weighted sum of the absolute value of outputs of WBLDD is passed through an energy detector, whose output is used as test statistic to take the final decision. By assigning weights proportional to the energy of the corresponding subband signals, the proposed detector approximates a frequency domain matched filter Simulation results are presented to show that the performance of the proposed detector is better than that of the wavelet packet transform based detector.