59 resultados para flow theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particle and fluid velocity fluctuations in a turbulent gas-particle suspension are studied experimentally using two-dimensional particle image velocimetry with the objective of comparing the experiments with the predictions of fluctuating force simulations. Since the fluctuating force simulations employ force distributions which do not incorporate the modification of fluid turbulence due to the particles, it is of importance to quantify the turbulence modification in the experiments. For experiments carried out at a low volume fraction of 9.15 x 10(-5) (mass loading is 0.19), where the viscous relaxation time is small compared with the time between collisions, it is found that the gas-phase turbulence is not significantly modified by the presence of particles. Owing to this, quantitative agreement is obtained between the results of experiments and fluctuating force simulations for the mean velocity and the root mean square of the fluctuating velocity, provided that the polydispersity in the particle size is incorporated in the simulations. This is because the polydispersity results in a variation in the terminal velocity of the particles which could induce collisions and generate fluctuations; this mechanism is absent if all of the particles are of equal size. It is found that there is some variation in the particle mean velocity very close to the wall depending on the wall-collision model used in the simulations, and agreement with experiments is obtained only when the tangential wall-particle coefficient of restitution is 0.7. The mean particle velocity is in quantitative agreement for locations more than 10 wall units from the wall of the channel. However, there are systematic differences between the simulations and theory for the particle concentrations, possibly due to inadequate control over the particle feeding at the entrance. The particle velocity distributions are compared both at the centre of the channel and near the wall, and the shape of the distribution function near the wall obtained in experiments is accurately predicted by the simulations. At the centre, there is some discrepancy between simulations and experiment for the distribution of the fluctuating velocity in the flow direction, where the simulations predict a bi-modal distribution whereas only a single maximum is observed in the experiments, although both distributions are skewed towards negative fluctuating velocities. At a much higher particle mass loading of 1.7, where the time between collisions is smaller than the viscous relaxation time, there is a significant increase in the turbulent velocity fluctuations by similar to 1-2 orders of magnitude. Therefore, it becomes necessary to incorporate the modified fluid-phase intensity in the fluctuating force simulation; with this modification, the mean and mean-square fluctuating velocities are within 20-30% of the experimental values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

String theory and gauge/gravity duality suggest the lower bound of shear viscosity (eta) to entropy density (s) for any matter to be mu h/4 pi k(B), when h and k(B) are reduced Planck and Boltzmann constants respectively and mu <= 1. Motivated by this, we explore eta/s in black hole accretion flows, in order to understand if such exotic flows could be a natural site for the lowest eta/s. Accretion flow plays an important role in black hole physics in identifying the existence of the underlying black hole. This is a rotating shear flow with insignificant molecular viscosity, which could however have a significant turbulent viscosity, generating transport, heat and hence entropy in the flow. However, in presence of strong magnetic field, magnetic stresses can help in transporting matter independent of viscosity, via celebrated Blandford-Payne mechanism. In such cases, energy and then entropy produces via Ohmic dissipation. In,addition, certain optically thin, hot, accretion flows, of temperature greater than or similar to 10(9) K, may be favourable for nuclear burning which could generate/absorb huge energy, much higher than that in a star. We find that eta/s in accretion flows appears to be close to the lower bound suggested by theory, if they are embedded by strong magnetic field or producing nuclear energy, when the source of energy is not viscous effects. A lower bound on eta/s also leads to an upper bound on the Reynolds number of the flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scaling of the streamwise velocity spectrum phi(11)(k(1)) in the so-called sink-flow turbulent boundary layer is investigated in this work. The present experiments show strong evidence for the k(1)(-1) scaling i.e. phi(11)(k(1)) = Lambda(1)U(tau)(2)k(1)(-1), where k(1)(-1) is the streamwise wavenumber and U-tau is the friction velocity. Interestingly, this k(1)(-1) scaling is observed much farther from the wall and at much lower flow Reynolds number (both differing by almost an order of magnitude) than what the expectations from experiments on a zero-pressure-gradient turbulent boundary layer flow would suggest. Furthermore, the coefficient A(1) in the present sink-flow data is seen to be non-universal, i.e. A(1) varies with height from the wall; the scaling exponent -1 remains universal. Logarithmic variation of the so-called longitudinal structure function, which is the physical-space counterpart of spectral k(1)(-1) scaling, is also seen to be non-universal, consistent with the non-universality of A(1). These observations are to be contrasted with the universal value of A(1) (along with the universal scaling exponent of 1) reported in the literature on zero-pressure-gradient turbulent boundary layers. Theoretical arguments based on dimensional analysis indicate that the presence of a streamwise pressure gradient in sink-flow turbulent boundary layers makes the coefficient A(1) non-universal while leaving the scaling exponent -1 unaffected. This effect of the pressure gradient on the streamwise spectra, as discussed in the present study (experiments as well as theory), is consistent with other recent studies in the literature that are focused on the structural aspects of turbulent boundary layer flows in pressure gradients (Harun etal., J. Flui(d) Mech., vol. 715, 2013, pp. 477-498); the present paper establishes the link between these two. The variability of A(1) accommodated in the present framework serves to clarify the ideas of universality of the k(1)(-1) scaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid granular flows are far-from-equilibrium-driven dissipative systems where the interaction between the particles dissipates energy, and so a continuous supply of energy is required to agitate the particles and facilitate the rearrangement required for the flow. This is in contrast to flows of molecular fluids, which are usually close to equilibrium, where the molecules are agitated by thermal fluctuations. Sheared granular flows form a class of flows where the energy required for agitating the particles in the flowing state is provided by the mean shear. These flows have been studied using the methods of kinetic theory of gases, where the particles are treated in a manner similar to molecules in a molecular gas, and the interactions between particles are treated as instantaneous energy-dissipating binary collisions. The validity of the assumptions underlying kinetic theory, and their applicability to the idealistic case of dilute sheared granular flows are first discussed. The successes and challenges for applying kinetic theory for realistic dense sheared granular flows are then summarised. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with a new approach to study the nonlinear inviscid flow over arbitrary bottom topography. The problem is formulated as a nonlinear boundary value problem which is reduced to a Dirichlet problem using certain transformations. The Dirichlet problem is solved by applying Plemelj-Sokhotski formulae and it is noticed that the solution of the Dirichlet problem depends on the solution of a coupled Fredholm integral equation of the second kind. These integral equations are solved numerically by using a modified method. The free-surface profile which is unknown at the outset is determined. Different kinds of bottom topographies are considered here to study the influence of bottom topography on the free-surface profile. The effects of the Froude number and the arbitrary bottom topography on the free-surface profile are demonstrated in graphical forms for the subcritical flow. Further, the nonlinear results are validated with the results available in the literature and compared with the results obtained by using linear theory. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel analysis to compute the admittance characteristics of the slots cut in the narrow wall of a rectangular waveguide, which includes the corner diffraction effects and the finite waveguide wall thickness, is presented. A coupled magnetic field integral equation is formulated at the slot aperture which is solved by the Galerkin approach of the method of moments using entire domain sinusoidal basis functions. The externally scattered fields are computed using the finite difference method (FDM) coupled with the measured equation of invariance (MEI). The guide wall thickness forms a closed cavity and the fields inside it are evaluated using the standard FDM. The fields scattered inside the waveguide are formulated in the spectral domain for faster convergence compared to the traditional spatial domain expansions. The computed results have been compared with the experimental results and also with the measured data published in previous literature. Good agreement between the theoretical and experimental results is obtained to demonstrate the validity of the present analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high-speed aerospace vehicles, supersonic flutter is a well-known phenomenon of dynamic instability to which external skin panels are prone. In theory, the instability stage is expressed by the 'flutter critical parameter' Q(crit), which is a function of the stiffness-, and dynamic pressure parameters. For a composite skin panel, Q(crit) can be maximised by lay-up optimisation. Repeated-sublaminate lay-up schemes possess good potential for economical lay-up optimisation because the corresponding effort is limited to a family of sublaminates of few layers only. When Q(crit) is obtained for all sublaminates of a family, and the sublaminates ranked accordingly, the resulting ranking reveals not only the optimum lay-up, but also the near-optimum lay-ups, which are useful design alternatives, and the inferior lay-ups which should be avoided. In this paper, we examine sublaminate-ranking characteristics for a composite panel prone to supersonic flutter. In particular, we consider a simple supported midplane-symmetrical rectangular panel of typical aspect ratio alpha and flow angle psi, and for four-layered sublaminates, obtain the Q(crit)-based rankings for a wide range of the number of repeats, r. From the rankings, we find that an optimum lay-up can exist for which the outermost layer is oriented wide of, rather than along, the flow. Furthermore, for many lay-ups other than the optimum and the inferior, we see that as r increases, Q(crit) undergoes significant change in the course of converging. To reconcile these findings, eigenvalue-coalescence characteristics are discussed in detail for specific cases.