36 resultados para flexible motion control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural-network-aided nonlinear dynamic inversion-based hybrid technique of model reference adaptive control flight-control system design is presented in this paper. Here, the gains of the nonlinear dynamic inversion-based flight-control system are dynamically selected in such a manner that the resulting controller mimics a single network, adaptive control, optimal nonlinear controller for state regulation. Traditional model reference adaptive control methods use a linearized reference model, and the presented control design method employs a nonlinear reference model to compute the nonlinear dynamic inversion gains. This innovation of designing the gain elements after synthesizing the single network adaptive controller maintains the advantages that an optimal controller offers, yet it retains a simple closed-form control expression in state feedback form, which can easily be modified for tracking problems without demanding any a priori knowledge of the reference signals. The strength of the technique is demonstrated by considering the longitudinal motion of a nonlinear aircraft system. An extended single network adaptive control/nonlinear dynamic inversion adaptive control design architecture is also presented, which adapts online to three failure conditions, namely, a thrust failure, an elevator failure, and an inaccuracy in the estimation of C-M alpha. Simulation results demonstrate that the presented adaptive flight controller generates a near-optimal response when compared to a traditional nonlinear dynamic inversion controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest in powering and maneuvering nanostructures remotely in fluidic media using noninvasive fuel-free methods, for which small homogeneous magnetic fields are ideally suited. Current strategies include helical propulsion of chiral nanostructures, cilia-like motion of flexible filaments, and surface assisted translation of asymmetric colloidal doublets and magnetic nanorods, in all of which the individual structures are moved in a particular direction that is completely tied to the characteristics of the driving fields. As we show in this paper, when we use appropriate magnetic field configurations and actuation time scales, it is possible to maneuver geometrically identical nanostructures in different directions, and subsequently position them at arbitrary locations with respect to each other. The method reported here requires proximity of the nanomotors to a solid surface, and could be useful in applications that require remote and independent control over individual components in microfluidic environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the study of the nonlinear dynamics of a rotating flexible link modeled as a one dimensional beam, undergoing large deformation and with geometric nonlinearities. The partial differential equation of motion is discretized using a finite element approach to yield four nonlinear, nonautonomous and coupled ordinary differential equations (ODEs). The equations are nondimensionalized using two characteristic velocities-the speed of sound in the material and a velocity associated with the transverse bending vibration of the beam. The method of multiple scales is used to perform a detailed study of the system. A set of four autonomous equations of the first-order are derived considering primary resonances of the external excitation and one-to-one internal resonances between the natural frequencies of the equations. Numerical simulations show that for certain ranges of values of these characteristic velocities, the slow flow equations can exhibit chaotic motions. The numerical simulations and the results are related to a rotating wind turbine blade and the approach can be used for the study of the nonlinear dynamics of a single link flexible manipulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a design methodology to stabilize collective circular motion of a group of N-identical agents moving at unit speed around individual circles of different radii and different centers. The collective circular motion studied in this paper is characterized by the clockwise rotation of all agents around a common circle of desired radius as well as center, which is fixed. Our interest is to achieve those collective circular motions in which the phases of the agents are arranged either in synchronized, in balanced or in splay formation. In synchronized formation, the agents and their centroid move in a common direction while in balanced formation, the movement of the agents ensures a fixed location of the centroid. The splay state is a special case of balanced formation, in which the phases are separated by multiples of 2 pi/N. We derive the feedback controls and prove the asymptotic stability of the desired collective circular motion by using Lyapunov theory and the LaSalle's Invariance principle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the transient analysis of flexible multibody systems within a hybrid finite element framework. Hybrid finite elements are based on a two-field variational formulation in which the displacements and stresses are interpolated separately yielding very good coarse mesh accuracy. Most of the literature on flexible multibody systems uses beam-theory-based formulations. In contrast, the use of hybrid finite elements uses continuum-based elements, thus avoiding the problems associated with rotational degrees of freedom. In particular, any given three-dimensional constitutive relations can be directly used within the framework of this formulation. Since the coarse mesh accuracy as compared to a conventional displacement-based formulation is very high, the scheme is cost effective as well. A general formulation is developed for the constrained motion of a given point on a line manifold, using a total Lagrangian method. The multipoint constraint equations are implemented using Lagrange multipliers. Various kinds of joints such as cylindrical, prismatic, and screw joints are implemented within this general framework. Hinge joints such as spherical, universal, and revolute joints are obtained simply by using shared nodes between the bodies. In addition to joints, the formulation and implementation details for a DC motor actuator and for prescribed relative rotation are also presented. Several example problems illustrate the efficacy of the developed formulation.