89 resultados para film structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the structure, microstructure and magnetic properties of Fe-Ga thin films deposited using DC magnetron sputtering technique on Si(100) substrate kept at different temperatures. Structural studies employing X-ray diffraction and TEM revealed the presence of only disordered A2 phase in the film. Columnar growth of nanocrystalline grains from the substrate was observed in the film deposited at room temperature. With increase in substrate temperature the grain size as well as surface roughness was found to increase. The magnetization of the films deposited at higher substrate temperatures were Found to saturate at lower magnetic held as compared to the room temperature deposited Film. Coercivity was found to decrease with increasing substrate temperature upto a minimum value of similar to 2 Oe for the film deposited at 450 degrees C and with further increase in substrate temperature it was found to increase. A maximum magnetostriction of 200 mu-strains was also observed for the film deposited at 450 degrees C. (C) 2015 Elsevier B.V. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8 h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the resonant frequency modulation of inertial microelectromechanical systems (MEMS) structures due to squeeze film stiffness over a range of working pressures. Squeeze film effects have been studied extensively, but mostly in the context of damping and Q-factor determination of dynamic MEMS structures, typically suspended over a fixed substrate with a very thin air gap. Here, we show with experimental measurements and analytical calculations how the pressure-dependent air springs (squeeze film stiffness) change the resonant frequency of an inertial MEMS structure by as much as five times. For capturing the isolated effect of the squeeze film stiffness, we first determine the static stiffness of our structure with atomic force microscope probing and then study the effect of the air spring by measuring the dynamic response of the structure, thus finding the resonant frequencies while varying the air pressure from 1 to 905 mbar. We also verify our results by analytical and Finite Element Method calculations. Our findings show that the pressure-dependent squeeze film stiffness can affect a rather huge range of frequency modulation (>400%) and, therefore, can be used as a design parameter for exploiting this effect in MEMS devices. 2014-0310]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypsin-treated rat brain myelin was subjected to biochemical and X-ray studies. Untreated myelin gave rise to a pattern of three rings with a fundamental repeat period of 155 Angstrom consisting of two bilayers per repeat period, whereas myelin treated with trypsin showed a fundamental repeat period of 75 Angstrom with one bilayer per repeat period. The integrated raw intensity of the h=4 reflection with respect to the h=2 reflection is 0.38 for untreated myelin. The corresponding value reduced to 0.23, 0.18, 0.17 for myelin treated with 5, 10, 40 units of trypsin per mg of myelin, respectively, for 30 min at 30 degrees C. The decrease in relative raw intensity of the higher-order reflection relative to the lower-order reflection is suggestive of a disordering of the phosphate groups upon trypsin treatment or an increased mosaicity of the membrane or a combination of both these effects, However, trypsin treatment does not lead to a complete breakdown of the membrane, The integrated intensity of the h=1 reflection, though weak, is above the measurable threshold for untreated myelin, whereas the corresponding intensity is below the measurable threshold for trypsin-treated myelin, indicating a possible asymmetric to symmetric transition of the myelin bilayer structure about its centre after trypsin treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gelonin is a single chain ribosome inactivating protein (RIP) with potential application in the treatment of cancer and AIDS. Diffraction quality crystals grown using PEG3350, belong to the space group P2(1), with it a = 49.4 Angstrom b = 44.9 Angstrom, c = 137.4 Angstrom and beta = 98.4 degrees, and contain two molecules in the asymmetric unit. Diffraction data collected to 1.8 Angstrom resolution has a R(m) value of 7.3%. Structure of gelonin has been solved by the molecular replacement method, using ricin A chain as the search model. Crystallographic refinement using X-PLOR resulted in a model for which the r.m.s deviations from ideal bond lengths and bond angles are 0.012 Angstrom and 2.7 degrees, respectively The final R-factor is 18.4% for 39,806 reflections for which I > 1.0 sigma(I).The C-alpha atoms of the two molecules in the asymmetric unit superpose to within 0.38 Angstrom for 247 atom pairs. The overall fold of gelonin is similar to that of other RIPs such as ricin A chain and alpha-momorcharin, the r.m.s.d. for C-alpha superpositions being 1.3 and 1.4 Angstrom, respectively The-catalytic residues (Glu166, Arg169 and Tyr113) in the active site form a hydrogen bond scheme similar to that observed in other RIPs. The conformation of Tyr74 in the active site, however, is significantly different from that in alpha-momorcharin. Three well defined water molecules are located in the active site cavity and one of them, X319, superposes to within 0.2 Angstrom of a corresponding water molecule in the structure of alpha-momorcharin. Any of the three could be the substrate water molecule in the hydrolysis reaction catalysed by gelonin.Difference electron density for a N-linked sugar moiety has been observed near only one of the two potential glycosylation sites in the sequence. The amino acid at position 239 has been established as Lys by calculation of omit electron density maps.The two cysteine residues in the sequence, Cys44 and Cys50, form a disulphide bond, and are therefore not available for disulphide conjugation with antibodies. Based on the structure, the region of the molecule that is involved in intradimer interactions is suggested to be suitable for introducing a Cys residue for purposes of conjugation with an antibody to produce useful immunotoxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N-methyl-N,N,N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, C-13-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides first-order spectra of the dissolved oriented molecules. Analyses of spectra of cis,cis-mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of KNb0.5V0.5OPO4, a new KTiOPO4 isomorph, has been refined from powder X-ray diffraction data by Rietveld refinement. The structure is orthorhombic, space group Pna2(1), with a = 12.933(1), b = 6.4713(8), and c = 10.7273(6) Angstrom, Z = 8. There is a preferential distribution of Nb(V) and V(III) atoms in the octahedral M(1) [0.806Nb, 0.194V] and M(2) [0.194Nb, 0.806V] sites, the M(1)O-6 octahedra being more distorted than the M(2)O-6 octahedra. The results are compared with other KTiOPO4 derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure determination of the heptapeptide Boc-Val-Ala-Leu-Aib-Val-Ala-Phe-OMe reveals two peptide helices in the asymmetric unit, Crystal parameters are: space group P2(1), a = 10.356(2) Angstrom, b = 19.488(5) Angstrom, c = 23.756(6) Angstrom, beta = 102.25(2)degrees), V = 4685.4 Angstrom(3), Z = 4 and R = 5.7% for 7615 reflections [I>3 sigma(I)]. Both molecules adopt largely alpha-helical conformations with variations at the C-terminus, Helix type Is determined by analysing both 4-->1 and 5-->1 hydrogen-bond interactions and comparison with the results of analysis of protein structures. The presence of two 4-->1 hydrogen-bond interactions, besides four 5-->1 interact ions in both the conformations provides an opportunity to characterize bifurcated hydrogen bonds at high resolution, Comparison of the two helical conformations with related peptide structures suggests that distortions at the C-terminus are more facile than at the N-terminus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new ternary interstitial nitride Ni2W3N has been synthesized by the ammonolysis of different oxide precursors and characterized by powder X-ray diffraction and electron microscopy. This nitride crystallizes in the cubic space group P4(1)32(213) [Ni2W3N, a=6.663(1) Angstrom, Z=4] and is isostructural with Al2Mo3C. This compound belongs to the rare class of intermetallic ternary nitrides and carbides crystallizing with a filled beta-Mn structure. Ni2W3N is not stable, it decomposes to a new compound NiW3N related to the distorted anti-perovskite, Ca3AsN structure.