140 resultados para fatty liver
Resumo:
Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.
Resumo:
1. Metabolites isolated from the urine of rats after oral administration of geraniol (I) were: geranic acid (II), 3-hydroxy-citronellic acid (III), 8-hydroxy-geraniol (IV), 8-carboxy-geraniol (V) and Hildebrandt acid (VI). 2. Metabolites isolated from urine of rats after oral administration of linalool (VII) were 8-hydroxy-linalool (VIII) and 8-carboxy-linalool (IX). 3. After three days of feeding rats with either geraniol or linalool, liver-microsomal cytochrome P-450 was increased. Both NADH- and NADPH-cytochrome c reductase activities were not significantly changed during the six days of treatment. 4. Oral administration of these two terpenoids did not affect any of the lung-microsomal parameters measured.
Resumo:
A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the Km values calculated for the substrate and NADPH are 6.5×10-5m and 2.8×10-5m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.
Resumo:
3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.
Resumo:
The presence of mitochondria increased the incorporation of [2-14C]mevalonate into sterols in a cell-free system from rat liver. Various phenyl and phenolic compounds inhibited the incorporation of mevalonate when added in vitro. p-Hydroxycinnamate, a metabolite of tyrosine, was the most powerful inhibitor among the compounds tested. Catechol, resorcinol and quinol were inhibitory at high concentrations. Organic acids lacking an aromatic ring were not inhibitory. Two hypocholesterolaemic drugs, Clofibrate (α-p-chlorophenoxyisobutyrate) and Clofenapate [α,4-(p-chlorophenyl)phenoxyisobutyrate], which are known to affect some step before the formation of mevalonate in the biosynthesis of cholesterol in vivo, showed inhibition at a step beyond the formation of mevalonate in vitro. The presence of the aromatic ring and the carboxyl group in a molecule appears to be necessary for the inhibition.
Resumo:
The synthesis of cytochrome P-450 (phenobarbital inducible) and cytochrome P-448 (3-methylcholanthrene inducible) have been studied in rat liver in vivo and in the wheat germ cell-free system using anti- cytochrome P-450 and anti-cytochrome P-448 antibodies. The major mature forms synthesized in vivo correspond to a molecular weight of 47,000 for cytochrome P-450 and 53,000 for cytochrome P-448. Translation of poly(A)-containing RNA from phenobarbital-treated rats in the wheat germ cell-free system reveals that the cell-free product immunoprecipitated with anti-cytochrome P-450 antibody has a molecular weight close to 47,000. In the case of 3-methylcholanthrene, the cell- free product immunoprecipitated with anti-cytochrome P-448 antibody shows a molecular weight around 59,000. Significant conversion of the 59,000 species to the 53,000 species can be demonstrated when the translation is carried out in the presence of microsomal membranes isolated from rat liver. Phenobarbital and 3-methylcholanthrene enhance the translatable messenger.
Resumo:
The far-ultraviolet region circular dichroic spectrumof serine hydroxymethyltransferase from monkey liver showed that the protein is in an α-helical conformation. The near ultraviolet circular dichoric spectrum revealed two negative bands originating from the tertiary conformational environment of the aromatic amino acid residues. Addition of urea or guanidinium chloride perturbed the characteristic fluorescence and far ultraviolet circular dichroic spectrum of the enzyme. The decrease in (θ)222 and enzyme activity followed identical patterns with increasing concentrations of urea, whereas with guanidinium chloride, the loss of enzyme activity preceded the loss of secondary structure. 2-Chloroethanol, trifluoroethanol and sodium dodecyl sulphate enhanced the mean residue ellipticity values. In addition, sodium dodecyl sulphate also caused a perturbation of the fluorescence emission spectrum of the enzyme. Extremes of pH decreased the – (θ)222 value. Plots of –(θ)222and enzyme activity as a function of pH showed maximal values at pH 7.4-7.5. These results suggested the prevalence of "conformational flexibility" in the structure of serine hydroxymethyltransferase.
Resumo:
The homogeneous serine hydroxymethyltransferase from monkey liver was optimally activate at 60°C and the Arrhenius plot for the enzyme was nonlinear with a break at 15°C. The monkey liver enzyme showed high thermal stability of 62°C, as monitored by circular dichroism at 222 nm, absorbance at 280 nm and enzyme activity. The enzyme exhibited a sharp co-operative thermal transition in the range of 50°-70° (Tm= 65°C), as monitored by circular dichroism. L-Serine protected the enzyme against both thermal inactivation and thermal disruption of the secondary structure. The homotropic interactions of tetrahydrofolate with the enzyme was abolished at high temperatures (at 70°C, the Hill coefficient value was 1.0). A plot of h values vs. assay temperature of tetrahydrofolate saturation experiments, showed the presence of an intermediate conformer with an h value of 1.7 in the temperature range of 45°-60°C. Inclusion of a heat denaturation step in the scheme employed for the purification of serine hydroxymethyltransferase resulted in the loss of cooperative interactions with tetrahydrofolate. The temperature effects on the serine hydroxylmethyltransferase, reported for the first time, lead to a better understanding of the heat induced alterations in conformation and activity for this oligomeric protein.
Resumo:
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.
Resumo:
Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.
Resumo:
A cDNA library for 6S–9S poly(A)-containing RNA from rat liver was constructed in Image . Initial screening of the clones was carried out using single stranded 32P-labeled cDNA prepared against poly(A)-containing RNA isolated from immunoadsorbed polyribosomes enriched for the nuclear-coded subunit messenger RNAs of cytochrome c oxidase. One of the clones, pCO89, was found to hybridize with the messenger RNA for subunit VIC. The DNA sequence of the insert in pCO89 was carried out and it has got extensive homology with the C-terminal 33 amino acids of subunit VIC from beef heart cytochrome c oxidase. In addition, the insert contained 146 bp, corresponding to a portion of the 3′-non-coding region. Northern blot analysis of rat liver RNA with the nick-translated insert of pCO89 revealed that the messenger RNA for subunit VI would contain around 510 bases.
Resumo:
The antihypercholesterolemic drug clofibrate (ethyl-α-p-chlorophenoxyisobutyrate) stimulated the latent ATPase activity and “superstimulated” the uncoupler-induced ATPase activity of rat-liver mitochondria. Addition of clofibrate decreased the turbidity of mitochondrial suspensions and released considerable amount of mitochondrial protein into solution. In these properties it closely resembled detergents like Triton X-100 and deoxycholate. However, unlike the detergents, clofibrate required the presence of a permeant cation for its disruptive action. Also, it was without any such effect on sonic submitochondrial particles. The drug enhanced the uptake of both Mg2 and Cl− by mitochondria suggesting that osmotic swelling precedes lysis. Sonic submitochondrial particles prepared in the presence of clofibrate showed a greater yield and comparable ATPase activity.
Resumo:
The porphyrogenic drug allylisopropylacetamide, a potent inducer of delta-aminolaevulinate synthetase, specifically increases nucleoplasmic RNA synthesis in rat liver. The drug-mediated increase in nucleoplasmic RNA synthesis is blocked by cycloheximide and haemin, which also inhibit the enzyme induction.
Resumo:
After partial hepatectomy the net increase in tissue weight and in RNA, DNA and proteins in the regenerating liver was markedly less in vitamin A-deleted or retinoic acid-supplemented male rats, compared with the corresponding normal control or retinyl acetate-supplemented ones.