39 resultados para exclusive breast feeding
Resumo:
Treatment of gem-dihalo-1,2-cyclopropanated D-oxyglycal with primary, secondary, and unsaturated alcohols, in the presence of AgOAc, leads to the formation of chloro-oxepines exclusively. Reaction of the resulting 2-chloro-oxepines with excess alcohol in the presence of AgOAc, do not promote further reactions. This result is in contrast to the reactions of D-glucal derived halo-oxepine with alcohols known previously that lead to the formation of furanoses as the major product under similar reaction conditions. Observation of this study consolidates the reactivity differences of gem-dihalo-1,2-cyclopropanated oxyglycals, as compared to gem-dihalo- 1,2-cyclopropanated glycals. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new colorimetric probe has been developed for the detection and estimation of Pd-II at sub-nanomolar concentrations. The probe consisted of rhodamine (signaling unit), which was linked with a bis-picolyl moiety (binding site) through a phenyl ring. Pd-II induced opening of the spirolactam ring of the probe with the generation of a prominent pink color. The excellent selectivity of the probe towards Pd-II over Pd-0 or Rh-II ensured its potential utility for the detection of residual palladium contamination in pharma-ceutical drugs and in Pd-catalyzed reactions. The probe showed a ``turn-on'' (bright yellow) fluorescence upon the addition of Pd-II, which made it suitable for the detection of Pd contaminants in mammalian cells.
Resumo:
Background: The Bmi1 polycomb ring finger oncogene, a transcriptional repressor belonging to the Polycomb group of proteins plays an important role in the regulation of stem cell self-renewal and is elevated in several cancers. In the current study, we have explored the role of Bmi1 in regulating the stemness and drug resistance of breast cancer cells. Methods: Using real time PCR and immunohistochemistry primary breast tissues were analyzed. Retro-and lentiviruses were utilized to overexpress and knockdown Bmi1, RT-PCR and Western blot was performed to evaluate mRNA and protein expression. Stemness properties were analyzed by flow cytometry and sphere-formation and tumor formation was determined by mouse xenograft experiments. Dual luciferase assay was employed to assess promoter activity and MTT assay was used to analyze drug response. Results: We found Bmi1 overexpression in 64% of grade III invasive ductal breast adenocarcinomas compared to normal breast tissues. Bmi1 overexpression in immortalized and transformed breast epithelial cells increased their sphere-forming efficiency, induced epithelial to mesenchymal transition ( EMT) with an increase in the expression of stemness-related genes. Knockdown of Bmi1 in tumorigenic breast cells induced epithelial morphology, reduced expression of stemness-related genes, decreased the IC50 values of doxorubicin and abrogated tumor-formation. Bmi1-high tumors showed elevated Nanog expression whereas the tumors with lower Bmi1 showed reduced Nanog levels. Overexpression of Bmi1 increased Nanog levels whereas knockdown of Bmi1 reduced its expression. Dual luciferase promoter-reporter assay revealed Bmi1 positively regulated the Nanog and NF kappa B promoter activity. RT-PCR analysis showed that Bmi1 overexpression activated the NF kappa B pathway whereas Bmi1 knockdown reduced the expression of NF kappa B target genes, suggesting that Bmi1 might regulate Nanog expression through the NF kappa B pathway. Conclusions: Our study showed that Bmi1 is overexpressed in several high-grade, invasive ductal breast adenocarcinomas, thus supporting its role as a prognostic marker. While Bmi1 overexpression increased self-renewal and promoted EMT, its knockdown reversed EMT, reduced stemness, and rendered cells drug sensitive, thus highlighting a crucial role for Bmi1 in regulating the stemness and drug response of breast cancer cells. Bmi1 may control self-renewal through the regulation of Nanog expression via the NF kappa B pathway.
Resumo:
Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.
Resumo:
Rrp1B (ribosomal RNA processing1 homolog B) is a novel candidate metastasis modifier gene in breast cancer. Functional gene assays demonstrated that a physical and functional interaction existing between Rrp1b and metastasis modifier gene SIPA1 causes reduction in the tumor growth and metastatic potential. Ectopic expression of Rrp1B modulates various metastasis predictive extra cellular matrix (ECM) genes associated with tumor suppression. The aim of this study is to determine the functional significance of single nucleotide polymorphism (SNP) in human Rrp1B gene (1307 T > C; rs9306160) with breast cancer development and progression. The study consists of 493 breast cancer cases recruited from Nizam's Institute of Medical Sciences, Hyderabad, and 558 age-matched healthy female controls from rural and urban areas. Genomic DNA was isolated by non-enzymatic method. Genotyping was done by amplification refractory mutation system (ARMS-PCR) method. Genotypes were reconfirmed by sequencing and results were analyzed statistically. We have performed Insilco analysis to know the RNA secondary structure by using online tool m fold. The TT genotype and T allele frequencies of Rrp1B1307 T > C polymorphism were significantly elevated in breast cancer (chi (2); p = < 0.008) cases compared to controls under different genetic models. The presence of T allele had conferred 1.75-fold risk for breast cancer development (OR = 1.75; 95 % CI = 1.15-2.67). The frequency of TT genotype of Rrp1b 1307T > C polymorphism was significantly elevated in obese patients (chi (2); p = 0.008) and patients with advanced disease (chi (2); p = 0.01) and with increased tumor size (chi (2); p = 0.01). Moreover, elevated frequency of T allele was also associated with positive lymph node status (chi (2); p = 0.04) and Her2 negative receptor status (chi (2); p = 0.006). Presence of Rrp1b1307TT genotype and T allele confer strong risk for breast cancer development and progression.
Resumo:
Hypoxia-inducible factor 1 alpha (HIF-1 alpha) is an important transcription factor that regulates different cellular responses to hypoxia. HIF-1 alpha is rapidly degraded by von Hippel-Lindau (VHL) protein under normoxic conditions and stabilized under hypoxia. A common variant of HIF-1 alpha (1772C > T) (rs 11549465) polymorphism, corresponding to an amino acid change from proline to serine at 582 position within the oxygen-dependent degradation domain, results in increased stability of the protein and altered transactivation of its target genes. The present study was aimed to find the association between HIF-1 alpha (1772C > T) (rs 11549465) polymorphism and breast cancer development. For this purpose, 348 primary breast cancer patients and 320 healthy and age-matched controls were genotyped through PCR-RFLP method. The genotype frequencies were compared between patients and controls, and their influence on clinical characteristics of breast cancer patients was analyzed. Our study revealed a significant increase of TT genotype in breast cancer patients compared to controls (p = 0.038). Further, TT genotype and T allele were found to be associated with progesterone receptor (PR)-negative status (p < 0.09). None of the clinical variables revealed significant association with HIF-1 alpha (1772C > T) (rs 11549465) polymorphism.
Resumo:
Translation of mRNAs is the primary function of the ribosomal machinery. Although cells allow for a certain level of translational errors/mistranslation (which may well be a strategic need), maintenance of the fidelity of translation is vital for the cellular function and fitness. The P-site bound initiator tRNA selects the start codon in an mRNA and specifies the reading frame. A direct P-site binding of the initiator tRNA is a function of its special structural features, ribosomal elements, and the initiation factors. A highly conserved feature of the 3 consecutive G:C base pairs (3GC pairs) in the anticodon stem of the initiator tRNAs is vital in directing it to the P-site. Mutations in the 3GC pairs diminish/abolish initiation under normal physiological conditions. Using molecular genetics approaches, we have identified conditions that allow initiation with the mutant tRNAs in Escherichia coli. During our studies, we have uncovered a novel phenomenon of in vivo initiation by elongator tRNAs. Here, we recapitulate how the cellular abundance of the initiator tRNA, and nucleoside modifications in rRNA are connected with the tRNA selection in the P-site. We then discuss our recent finding of how a conserved feature in the mRNA, the Shine-Dalgarno sequence, influences tRNA selection in the P-site.
Resumo:
Breast cancer is one of the leading cause of cancer related deaths in women and early detection is crucial for reducing mortality rates. In this paper, we present a novel and fully automated approach based on tissue transition analysis for lesion detection in breast ultrasound images. Every candidate pixel is classified as belonging to the lesion boundary, lesion interior or normal tissue based on its descriptor value. The tissue transitions are modeled using a Markov chain to estimate the likelihood of a candidate lesion region. Experimental evaluation on a clinical dataset of 135 images show that the proposed approach can achieve high sensitivity (95 %) with modest (3) false positives per image. The approach achieves very similar results (94 % for 3 false positives) on a completely different clinical dataset of 159 images without retraining, highlighting the robustness of the approach.
Resumo:
Metastasis is clinically the most challenging and lethal aspect of breast cancer. While animal-based xenograft models are expensive and time-consuming, conventional two-dimensional (2D) cell culture systems fail to mimic in vivo signaling. In this study we have developed a three-dimensional (3D) scaffold system that better mimics the topography and mechanical properties of the breast tumor, thus recreating the tumor microenvironment in vitro to study breast cancer metastasis. Porous poly(e-caprolactone) (PCL) scaffolds of modulus 7.0 +/- 0.5 kPa, comparable to that of breast tumor tissue were fabricated, on which MDA-MB-231 cells proliferated forming tumoroids. A comparative gene expression analysis revealed that cells growing in the scaffolds expressed increased levels of genes implicated in the three major events of metastasis, viz., initiation, progression, and the site-specific colonization compared to cells grown in conventional 2D tissue culture polystyrene (TCPS) dishes. The cells cultured in scaffolds showed increased invasiveness and sphere efficiency in vitro and increased lung metastasis in vivo. A global gene expression analysis revealed a significant increase in the expression of genes involved in cell cell and cell matrix interactions and tissue remodeling, cancer inflammation, and the PI3K/Akt, Wnt, NF-kappaB, and HIFI signaling pathways all of which are implicated in metastasis. Thus, culturing breast cancer cells in 3D scaffolds that mimic the in vivo tumor-like microenvironment enhances their metastatic potential. This system could serve as a comprehensive in vitro model to investigate the manifold mechanisms of breast cancer metastasis.